
More About Vectors CS 311

This document teaches you about the dot product and cross product, including their geo-

metric meanings and how they facilitate backface culling. It also describes spherical coordinates.

1 Dot product

Suppose that you have two d-dimensional vectors v⃗ and w⃗, rendered in the same coordinate

system as

v⃗ =


v0
...

vd−1

 , w⃗ =


w0

...

wd−1

 .

The dot product of v⃗ and w⃗ is the number v⃗ · w⃗ defined as

v⃗ · w⃗ =
d−1∑
k=0

vkwk = v0w0 + · · ·+ vd−1wd−1.

The magnitude or length ||v⃗|| of a vector v⃗ is defined as the square root of the dot product of

the vector with itself:

||v⃗|| =
√
v⃗ · v⃗ =

√
v02 + · · ·+ vd−1

2.

(This definition might remind you of the Pythagorean theorem. In modern mathematics, the

Pythagorean “theorem” is a definition, not a theorem.)

The vectors of length 1 are especially important for describing directions in space. They are

called unit vectors. If v⃗ has non-zero length, then dividing v⃗ by its length produces a unit vector
1

||v⃗|| v⃗ in the same direction as v⃗.

The dot product can be described in another way, that reveals its geometric meaning. If you

place v⃗ and w⃗ tail-to-tail, then there is some angle θ between them. It’s a non-obvious fact that

v⃗ · w⃗ = ||v⃗|| ||w⃗|| cos θ.

The two vectors v⃗ and w⃗ are perpendicular if and only if θ = π/2 = 90◦, which occurs if and

only if v⃗ · w⃗ = 0. If v⃗ · w⃗ > 0, then the two vectors point roughly in the same direction. If

v⃗ · w⃗ < 0, then the two vectors point roughly in opposite directions.

Here are some algebraic rules that the dot product obeys. For all vectors u⃗, v⃗, and w⃗ and

all numbers c,

• (u⃗+ v⃗) · w⃗ = u⃗ · w⃗ + v⃗ · w⃗ (linearity in the first argument),

• (cu⃗) · v⃗ = c(u⃗ · v⃗) (linearity in the first argument),

• u⃗ · (v⃗ + w⃗) = u⃗ · v⃗ + u⃗ · w⃗ (linearity in the second argument),

• u⃗ · (cv⃗) = c(u⃗ · v⃗) (linearity in the second argument),
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• v⃗ · w⃗ = w⃗ · v⃗ (symmetry),

• v⃗ · v⃗ > 0 unless v⃗ = 0⃗ (positive definiteness).

From these basic rules, many other properties follow. For example,

||v⃗ − w⃗||2 = (v⃗ − w⃗) · (v⃗ − w⃗) = v⃗ · v⃗ − v⃗ · w⃗ − w⃗ · v⃗ + w⃗ · w⃗ = ||v⃗||2 − 2v⃗ · w⃗ + ||w⃗||2.

2 Cross product

The following concept exists for vectors only in dimensions d = 0, 1, 3, 7, and we will discuss it

only in dimension d = 3. The cross product of two 3-dimensional vectors v⃗ and w⃗ is defined to

be the vector

v⃗ × w⃗ =


v0

v1

v2

×


w0

w1

w2

 =


v1w2 − v2w1

v2w0 − v0w2

v0w1 − v1w0

 .

Alternatively, there is a geometric definition of the cross product, in terms of its direction

and magnitude. Let θ be the angle between v⃗ and w⃗. Then the magnitude of the cross product

is

||v⃗ × w⃗|| = ||v⃗|| ||w⃗|| sin θ.

The direction of the cross product is perpendicular to both v⃗ and w⃗. That’s not quite enough to

complete the definition, because there are two opposite directions that are both perpendicular

to v⃗ and w⃗. To complete the definition, we specify that the cross product is right-handed. To

understand what this means, hold your right hand in the air, with your index finger perpendicular

to your thumb, and your middle finger perpendicular to both your thumb and index finger.

Suppose that your index finger is v⃗ and your middle finger is w⃗. Then your thumb points in the

direction of v⃗ × w⃗.

Here are some algebraic rules that the cross product obeys. For all u⃗, v⃗, and w⃗ and all c,

• (u⃗+ v⃗)× w⃗ = u⃗× w⃗ + v⃗ × w⃗ (linearity in the first argument),

• (cu⃗)× v⃗ = c(u⃗× v⃗) (linearity in the first argument),

• u⃗× (v⃗ + w⃗) = u⃗× v⃗ + u⃗× w⃗ (linearity in the second argument),

• u⃗× (cv⃗) = c(u⃗× v⃗) (linearity in the second argument),

• v⃗ · w⃗ = −w⃗ · v⃗ (anti-symmetry),

• u⃗× (v⃗ × w⃗) + v⃗ × (w⃗ × u⃗) + w⃗ × (u⃗× v⃗) = 0⃗ (Jacobi identity).

The cross product is not associative; the Jacobi identity describes how it fails to be associative.

The cross product satisfies many more rules than the ones listed here, including several rules

where it interacts with the dot product.
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3 Backface culling

Here is an example of how the dot and cross products interact in computer graphics. Suppose

that we have a closed surface in 3D, that is made out of 3D triangles. Each triangle is a list a⃗,

b⃗, c⃗ of 3D points, in counter-clockwise order when viewed from “outside” the surface. We want

to determine whether a given triangle is facing toward us or not. If it is facing toward us, then

we should render it. If it is facing away from us, then we should not render it, because it is

guaranteed to be occluded by some triangles facing toward us, because the surface is closed. So

is it facing toward us or not?

The vector b⃗ − a⃗ points along one side of the triangle, and the vector c⃗ − a⃗ points along

another side. The cross product of these two vectors is

(⃗b− a⃗)× (c⃗− a⃗) =


(b1 − a1)(c2 − a2)− (b2 − a2)(c1 − a1)

(b2 − a2)(c0 − a0)− (b0 − a0)(c2 − a2)

(b0 − a0)(c1 − a1)− (b1 − a1)(c0 − a0)

 .

The cross product is perpendicular to the triangle. If it is facing roughly toward the camera,

then we should render the triangle. If it is facing roughly away from the camera, then we should

not render the triangle. It is implicit, in the way that we’ve placed coordinates on the screen,

that the vector

e⃗ =


0

0

1


points toward the camera. So backface culling boils down to the sign of the dot product

e⃗ · ((⃗b− a⃗)× (c⃗− a⃗)) = (b0 − a0)(c1 − a1)− (b1 − a1)(c0 − a0).

A happy coincidence is that this crucial quantity (b0 − a0)(c1 − a1) − (b1 − a1)(c0 − a0) is

already computed in our triRender function. It is the determinant of the 2× 2 matrix[
b0 − a0 c0 − a0

b1 − a1 c1 − a1

]
,

which we invert while computing interpolations. So, if this determinant is positive, then we

must render the triangle. If it is negative, then we can ignore the triangle. If it is zero, which

happens rarely, then the line of sight is parallel to the triangle, so the triangle will not fill any

pixels, so we ignore it then too.

4 Spherical coordinates

This section has nothing to do with the dot or cross product. It merely describes a convenient

way of making 3D vectors of length 1. Let ρ, ϕ, and θ be three numbers, such that ρ ≥ 0,
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0 ≤ ϕ ≤ π, and −π ≤ θ ≤ π. Then

v⃗ =


ρ sinϕ cos θ

ρ sinϕ sin θ

ρ cosϕ


is a vector of length ρ, whose direction is specified by ϕ and θ. Frequently, but not always, we

set ρ = 1, so that we produce a vector of length 1.

In geography, each point on the Earth’s surface can be specified by a latitude and longitude.

Latitude is 90◦ at the North Pole, 0◦ at the Equator, and −90◦ at the South Pole. For example,

Northfield is at about 44◦ latitude, so it’s about halfway between the Equator and the North

Pole. If latitude is an angle measuring north-south-ness, then longitude is an angle measuring

east-west-ness. Longitude is 0◦ at the Prime Meridian (a great circle that runs through the

United Kingdom, Ghana, and several countries between them). Longitude is positive east of

there and negative west of there. Northfield is roughly at longitude −93◦, and the International

Date Line is roughly at longitude ±180◦.

So how does this geography lesson relate to spherical coordinates? Well, imagine the Earth

placed in a Cartesian coordinate system. The origin is at the center of the Earth. The x-axis

punctures the Earth’s surface off the coast of West Africa, where the Equator meets the Prime

Meridian. The y-axis punctures the Earth’s surface at a certain point on the Equator in the

eastern Indian Ocean. The z-axis punctures the Earth’s surface at the North Pole. With these

conventions in place, longitude is θ, and latitude is 90◦ − ϕ. Sometimes ϕ is called co-latitude,

meaning the angle that you add to latitude to get 90◦.

Warning: In physics textbooks, the notation is often reversed, so that 0 ≤ θ ≤ π is the co-

latitude and −π ≤ ϕ ≤ π is the longitude. There’s nothing wrong or right about that notation.

You just have to pick a notation and use it consistently.
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