
4× 4 Matrices CS 311

This tutorial teaches you about 4 × 4 matrices. It begins with transforming vectors and

composing transformations. It also describes how 4 × 4 matrices can represent rotations and

translations of three-dimensional space.

1 Transforming And Composing

A 4× 4 matrix can transform four-dimensional vectors, in a way that’s very similar to the two-

and three-dimensional cases that we’ve already studied. If M is 4× 4 and v⃗ is four-dimensional,

then

Mv⃗ =


M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33




v0

v1

v2

v3

 =


M00v0 +M01v1 +M02v2 +M03v3

M10v0 +M11v1 +M12v2 +M13v3

M20v0 +M21v1 +M22v2 +M23v3

M30v0 +M31v1 +M32v2 +M33v3

 .

If N is also a 4 × 4 matrix, then MN is a 4 × 4 matrix whose jth column is M times the jth

column of N . In other words,

(MN)ij =
3∑

k=0

MikNkj = Mi0N0j +Mi1N1j +Mi2N2j +Mi3N3j .

Geometrically, MN is the composite transformation resulting from N followed in time by M .

As always, matrix multiplication is associative and not commutative. The 4× 4 identity matrix

I =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


satisfies Iv⃗ = v⃗ and IM = M = MI for all M and v⃗.

2 Homogeneous Coordinates

In an earlier tutorial, we homogenized two dimensions into three dimensions, so that we could

express translation using matrices. Now we homogenize three dimensions into four, again for

the sake of translation.

In homogenization, any three-dimensional point p⃗ gets a 1 appended, and any 3× 3 matrix

M gets a row and column of 0s and 1s appended:

p⃗ =


p0

p1

p2

1

 , M =


M00 M01 M02 0

M10 M11 M12 0

M20 M21 M22 0

0 0 0 1

 .
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It is not difficult to check that the new Mp⃗ is the homogeneous version of the original Mp⃗.

Translation by a three-dimensional vector t⃗ manifests as the 4× 4 matrix

T =


1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1

 .

The inverse operation should intuitively be translation by −t⃗. So one might guess that

T−1 =


1 0 0 −t0

0 1 0 −t1

0 0 1 −t2

0 0 0 1

 .

In fact, that guess is correct, as you can check by computing TT−1 and T−1T .

3 Rotations Followed By Translations

The composite transformation resulting from M followed by T is

TM =


1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1




M00 M01 M02 0

M10 M11 M12 0

M20 M21 M22 0

0 0 0 1

 =


M00 M01 M02 t0

M10 M11 M12 t1

M20 M21 M22 t2

0 0 0 1

 .

In computer graphics, we usually use this framework to express rotation followed by translation.

So M (before it is homogenized) is a 3 × 3 rotation matrix R. The preceding matrix tutorial

gave two useful ways of making such an R.

Sometimes, when we have a rotation-them-translation transformation TR, we need to know

the inverse transformation. Intuitively, if TR means rotation by R then translation by t⃗, then

the inverse transformation should be translation by −t⃗ then rotation by R−1 = R⊤. So it should
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be

(TR)−1 =


R00 R10 R20 0

R01 R11 R21 0

R02 R12 R22 0

0 0 0 1




1 0 0 −t0

0 1 0 −t1

0 0 1 −t2

0 0 0 1



=


R00 R10 R20 −R00t0 −R10t1 −R20t2

R01 R11 R21 −R01t0 −R11t1 −R21t2

R02 R12 R22 −R02t0 −R12t1 −R22t2

0 0 0 1



=


R00 R10 R20

(
−R⊤t⃗

)
0

R01 R11 R21

(
−R⊤t⃗

)
1

R02 R12 R22

(
−R⊤t⃗

)
2

0 0 0 1



=


1 0 0

(
−R⊤t⃗

)
0

0 1 0
(
−R⊤t⃗

)
1

0 0 1
(
−R⊤t⃗

)
2

0 0 0 1




R00 R10 R20 0

R01 R11 R21 0

R02 R12 R22 0

0 0 0 1

 .

In other words, the inverse of TR is rotation by R−1 followed by translation by −R−1t⃗. That’s

not obvious, but that’s how it turns out. And it’s worth emphasizing that this (TR)−1 is not

generally equal to T−1R−1, which would be

T−1R−1 =


R00 R10 R20 −t0

R01 R11 R21 −t1

R02 R12 R22 −t2

0 0 0 1

 .
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