
More About 3× 3 Matrices CS 311

This tutorial covers a few more points about 3× 3 matrices. It focuses on rotations, which

are much more complicated in three dimensions than in two dimensions.

1 Inversion and Transposition

In our 2×2 matrix tutorial, we learned about determinants and inverses of 2×2 matrices M . In

fact, we learned how to compute determinants and inverses explicitly (because we needed them

for our linear interpolator).

The same ideas apply to any 3× 3 matrix M . There is a number called the determinant of

M , and M has an inverse M−1 if and only if detM ̸= 0. But we’re not going to learn how to

compute detM or M−1 in general, because we don’t need them in this course. We need only

one extremely special case: rotations.

Rotations of three-dimensional space can be represented by 3×3 matrices. They turn out to

be drastically more complicated than rotations of two-dimensional space. The following sections

give two useful ways to construct three-dimensional rotations. For the rest of this section,

suppose that we have already constructed a 3× 3 rotation matrix R.

What is detR? It is always 1. And therefore R−1 exists.

What is R−1? Well, define the transpose of a 3 × 3 matrix M to be the 3 × 3 matrix M⊤

obtained by reflecting M across its diagonal:

M⊤ =


M00 M01 M02

M10 M11 M12

M20 M21 M22


⊤

=


M00 M10 M20

M01 M11 M21

M02 M12 M22

 .

In the special case where M is a rotation matrix R, then R−1 = R⊤. That’s great news. It

means that, for rotation matrices, inversion is easy, fast, and numerically precise.

2 Describing Rotations In Terms Of Pairs Of Vectors

Suppose that we have two length-1, three-dimensional vectors u⃗ and v⃗ that are perpendicular to

each other. We also have two length-1, three-dimensional vectors a⃗ and b⃗ that are perpendicular

to each other. There is a unique rotation of three-dimensional space that transforms u⃗ to a⃗ and

v⃗ to b⃗. We wish to find the 3× 3 matrix R that describes that rotation.

We compute the cross product w⃗ = u⃗ × v⃗ and form the 3 × 3 matrix Q with columns u⃗, v⃗,

w⃗. Similarly, we form a 3× 3 matrix S with columns a⃗, b⃗, a⃗× b⃗. Then we compute R = SQ⊤.

That’s it.

If you’ve studied linear algebra, then you should be able to check that this answer is correct

pretty quickly. Try applying R to u⃗ and to v⃗, symbolically. You should get a⃗ and b⃗.
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3 Describing Rotations In Terms Of Angle And Axis

Any rotation of three-dimensional space can be conceptualized as an axis of rotation and an

amount of rotation about that axis. The axis can be described as a length-1, three-dimensional

vector u⃗. The amount of rotation can be described as a number α, which is an angle measured

in radians. The rotation rotates space about the axis u⃗, through the angle α, counter-clockwise

in a right-handed sense. To understand what this means, hold your right hand in the air, with

its fingers curled but its thumb pointing out. The thumb is the axis. If α > 0, then the fingers

point in the direction of rotation. If α < 0, then the fingers point opposite to the direction of

rotation. The amount of rotation is |α|.
The rotation about u⃗ through angle α should be writable as a 3 × 3 matrix R. An explicit

expression for this matrix was found by Euler and Rodrigues in the late 1700s and early 1800s.

Here it is. First we place the three components of the vector u⃗ in a matrix U like this:

U =


0 −u2 u1

u2 0 −u0

−u1 u0 0

 .

Then we square that matrix U . The resulting matrix U2 can be written in several ways:

U2 = UU =


−u1

2 − u2
2 u0u1 u0u2

u0u1 −u0
2 − u2

2 u1u2

u0u2 u1u2 −u0
2 − u1

2

 =


u0

2 − 1 u0u1 u0u2

u0u1 u1
2 − 1 u1u2

u0u2 u1u2 u2
2 − 1

 .

Then the desired rotation matrix is

R = I + (sinα)U + (1− cosα)U2.

In the equation above, the first term on the right is the 3× 3 identity matrix. The second term

is U with each of its entries scaled by sinα. The third term is U2 with each of its entries scaled

by 1− cosα. The three terms are added up, entry by entry, to produce R. In other words,

Rij = Iij + (sinα)Uij + (1− cosα)(U2)ij .

If you wish to understand better, how the Euler-Rodrigues formula works, then you might

try computing the special case where α = 0. You might also try the special case u0 = 0, u1 = 0,

u2 = 1. You might also try computing Ru⃗ symbolically, under no special assumptions. Do the

answers make sense?
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