
3× 3 Matrices CS 311

This tutorial teaches you about 3 × 3 matrices. It begins with transforming vectors and

composing transformations. Then it goes on to describe how 3 × 3 matrices can represent

rotations and translations of two-dimensional space. (In a later tutorial, we go into more depth

about how 3× 3 matrices describe transformations of three-dimensional space.)

1 Transforming And Composing

A 3×3 matrix M can transform a three-dimensional vector v⃗ to a new three-dimensional vector

Mv⃗, like this:

Mv⃗ =


M00 M01 M02

M10 M11 M12

M20 M21 M22




v0

v1

v2

 =


M00v0 +M01v1 +M02v2

M10v0 +M11v1 +M12v2

M20v0 +M21v1 +M22v2

 .

If that looks crazy to you, it might help to compare it to the two-dimensional case. They follow

a single pattern; the three-dimensional case just has more of it.

If M and N are both 3× 3 matrices, then their product MN is

MN =


M00 M01 M02

M10 M11 M12

M20 M21 M22




N00 N01 N02

N10 N11 N12

N20 N21 N22



=


M00N00 +M01N10 +M02N20 M00N01 +M01N11 +M02N21 M00N02 +M01N12 +M02N22

M10N00 +M11N10 +M12N20 M10N01 +M11N11 +M12N21 M10N02 +M11N12 +M12N22

M20N00 +M21N10 +M22N20 M20N01 +M21N11 +M22N21 M20N02 +M21N12 +M22N22

 .

It is helpful to recognize that the jth column of MN is M times the jth column of N . Or maybe

you would prefer a more concise expression:

(MN)ij =

2∑
k=0

MikNkj = Mi0N0j +Mi1N1j +Mi2N2j .

Geometrically, MN is the composite transformation resulting from doing N followed in time

by M . Matrix multiplication is associative, so M(Nv⃗) = (MN)v⃗. However, matrix multiplica-

tion is not commutative: MN ̸= NM except in special cases. The 3× 3 identity matrix

I =


1 0 0

0 1 0

0 0 1


satisfies Iv⃗ = v⃗ and IM = M = MI for all M and v⃗.

1



3× 3 Matrices CS 311

2 Homogeneous coordinates

Suppose that I have a two-dimensional point p⃗. I want to transform it by a 2× 2 matrix M and

then translate it by a 2× 1 vector t⃗. So the final result will be

t⃗+Mp⃗ =

[
t0

t1

]
+

[
M00 M01

M10 M11

][
p0

p1

]
=

[
t0 +M00p0 +M01p1

t1 +M10p0 +M11p1

]
.

It is not possible to express the translation, let alone the composite transformation, as a 2 × 2

matrix. To work around this problem, we use a mathematical trick (that is not taught in most

introductory linear algebra courses).

We append a 1 to the end of any two-dimensional vector p⃗, so that it becomes a three-

dimensional vector:

p⃗ =


p0

p1

1

 .

Correspondingly, any 2× 2 matrix M gets a row and column of 0s and 1s like this:

M =


M00 M01 0

M10 M11 0

0 0 1

 .

We call these the homogeneous versions of p⃗ and M . If we multiply them, then we get the

homogeneous version of Mp⃗:
M00 M01 0

M10 M11 0

0 0 1




p0

p1

1

 =


M00p0 +M01p1

M10p0 +M11p1

1

 =


(Mp⃗)0

(Mp⃗)1

1

 .

So far, the homogeneous versions don’t seem to be hurting us much, but they don’t seem to be

helping us either. They start helping us when we realize that translation can be expressed in

this framework too. Let T be the matrix

T =


1 0 t0

0 1 t1

0 0 1

 .

Then, for any p⃗,

T p⃗ =


1 0 t0

0 1 t1

0 0 1




p0

p1

1

 =


p0 + t0

p1 + t1

1

 =


(p⃗+ t⃗)0

(p⃗+ t⃗)1

1


is the homogeneous version of p⃗ translated by t⃗.

2



3× 3 Matrices CS 311

3 Rotation followed by translation

For computer graphics, the most important example is rotation followed by translation:

TM =


1 0 t0

0 1 t1

0 0 1




cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 =


cos θ − sin θ t0

sin θ cos θ t1

0 0 1

 .

Suppose that we want to rotate and translate a two-dimensional point p⃗, then rotate and

translate it again (by a different rotation and translation), then rotate and translate again, and

so on. Suppose that there are d rotations and d translations in all. Here are two strategies:

• Don’t use homogeneous coordinates. Just apply each of the rotations and translations to

p⃗ in the ordinary way, using 2× 2 and 2× 1 matrices.

• Do use homogeneous coordinates. So each rotation and translation is a 3×3 matrix. Don’t

apply them to p⃗ immediately. First, multiply them together to get a single 3× 3 matrix.

Then multiply that matrix by p⃗.

If we want to transform a single p⃗, then which strategy is faster? If we want to transform many

vectors p⃗ (all by the same sequence of rotations and translations), then which strategy is faster?

3


