
2× 2 Matrices CS 311

This tutorial teaches you about 2×2 matrices: transforming vectors, composition, inversion,

and their geometric meanings.

1 What Is A Matrix?

A matrix is a rectangular grid of numbers. An n×m matrix is one with n rows and m columns.

For example, here is a specific 2× 3 matrix:

M =

[
1 −4.2 π

0 2 2.2

]
.

In math, it is common to index the rows using 1 ≤ i ≤ n and the columns using 1 ≤ j ≤ m. The

entry of M in the ith row and jth column is denoted Mi,j or simply Mij if that’s clear enough:

M =

[
M1,1 M1,2 M1,3

M2,1 M2,2 M2,3

]
=

[
M11 M12 M13

M21 M22 M23

]
.

In our course, because we’re using C, we instead index from 0:

M =

[
M00 M01 M02

M10 M11 M12

]
.

In an earlier tutorial, we learned about vectors. A n-dimensional vector (within a standard-

ized coordinate system) is essentially the same thing as an n× 1 matrix. Because there is only

one column, the column index is always 0, and it is usually dropped, along with the “⃗ ”:

v⃗ =


v⃗0,0

v⃗1,0
...

v⃗n−1,0

 =


v0

v1
...

vn−1

 .

In this tutorial, we work exclusively with 2 × 2 matrices and 2 × 1 matrices. They are

important to us because they form a convenient framework for 2-dimensional geometry: 2 × 1

matrices represent vectors and points, and 2 × 2 matrices represent transformations of those

vectors and points.

2 Transforming Vectors

We now explain the way in which 2 × 2 matrices represent transformations of 2 × 1 matrices.

The key concept here is matrix multiplication. The product of a 2 × 2 matrix M and a 2 × 1

matrix v⃗ is another 2× 1 matrix Mv⃗, defined as

Mv⃗ =

[
M00 M01

M10 M11

][
v0

v1

]
=

[
M00v0 +M01v1

M10v0 +M11v1

]
.
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Figure 1: The left side is a shape in the plane. The right side is the same shape, after each of

its points v⃗ has been rotated by the rotation matrix with θ = π/3 = 60◦.

To build your intuition, here are four important examples of what M could be.

First, for any angle θ, the matrix

M =

[
cos θ − sin θ

sin θ cos θ

]

represents counterclockwise rotation of the plane through θ. For example, if θ = π/3 = 60◦,

then, for every vector v⃗,

Mv⃗ =

[
1/2 −

√
3/2

√
3/2 1/2

][
v0

v1

]
=

[
v0/2− v1

√
3/2

v0
√
3/2 + v1/2

]

is a vector of the same magnitude as v⃗, but directed π/3 radians or 60◦ counterclockwise from

v⃗’s direction. See Figure 1.

Second, for any number k > 0,

M =

[
1 k

0 1

]
represents a top-to-the-right shear. For example, if k = 3, then

M

[
0

1

]
=

[
1 3

0 1

][
0

1

]
=

[
3

1

]
.

See Figure 2. Similarly, if k < 0, then the shear is top-to-the-left.

Third, for any numbers k and ℓ,

M =

[
k 0

0 ℓ

]
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Figure 2: The left side is a shape in the plane. The right side is the same shape, after each of

its points v⃗ has been sheared by the shear matrix with k = 3.

Figure 3: The left side is a shape in the plane. The right side is the same shape, after each of

its points v⃗ has been distorted by the distortion matrix with k = 3 and ℓ = 1/2.

represents a distortion that stretches the plane horizontally by a factor of k and vertically by a

factor of ℓ. See Figure 3. Actually, “stretch” is a good descriptor only if k, ℓ > 1. For example, if

ℓ = 1/2, then M compresses the plane in the vertical direction. If k = −5, then M ’s horizontal

effect is to flip and stretch.

Fourth,

M =

[
1 0

0 1

]
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is the 2 × 2 identity matrix, usually denoted I. For any vector v⃗, Iv⃗ = v⃗. Geometrically, I

represents the trivial transformation, that does nothing. Notice that I is a special case of all

three preceding examples: It is rotation by θ = 0 = 0◦, shear by k = 0, and distortion by

k = ℓ = 1.

3 Composing Transformations

To compose transformations is to do one after another. For example, suppose that we want to

shear the vector v⃗ and then rotate that sheared vector. Then we might compute[
cos θ − sin θ

sin θ cos θ

]([
1 k

0 1

]
v⃗

)
.

For each v⃗, we have to do two matrix multiplications: the inner one and then the outer one.

When there are many vectors v⃗ to transform, we can approximately double the speed of the

computation as follows.

Define the product of two 2× 2 matrices like this:

MN =

[
M00 M01

M10 M11

][
N00 N01

N10 N11

]
=

[
M00N00 +M01N10 M00N01 +M01N11

M10N00 +M11N10 M10N01 +M11N11

]
.

It may help to notice that the left column of MN is M times the left column of N , and the

right column of MN is M times the right column of N . Anyway, it turns out that matrix

multiplication is associative, meaning that (MN)P = M(NP ) for any matrices. So we can

rewrite the shear-then-rotate computation as([
cos θ − sin θ

sin θ cos θ

][
1 k

0 1

])
v⃗ =

[
cos θ k cos θ − sin θ

sin θ cos θ + k sin θ

]
v⃗.

Now transforming each v⃗ requires only one matrix multiplication.

You can string together three, four, or any number of transformations like this. The first

transformation is on the right, and the last transformation is on the left. The order is important,

because matrix multiplication is not commutative! For example, rotate-then-shear is[
1 k

0 1

][
cos θ − sin θ

sin θ cos θ

]
=

[
cos θ + k sin θ k cos θ − sin θ

sin θ cos θ

]
,

which, you can see, is different from shear-then-rotate.

The identity matrix I plays the role of 1 in the world of matrices, in that IM = M = MI

for all matrices M . This should make geometric sense: If we compose a transformation M with

a transformation I that does nothing, then the overall effect is just M .
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4 Determinant

The determinant of a 2× 2 matrix M is a number defined as

detM = det

[
M00 M01

M10 M11

]
= M00M11 −M01M10.

The determinant captures a crucial geometric property of the transformation represented by M :

its area distortion. For example, a rotation matrix has determinant

det

[
cos θ − sin θ

sin θ cos θ

]
= cos2 θ + sin2 θ = 1.

If you draw a square in the plane and then rotate it, the rotated square has the same area as

the original square (Figure 1). Similarly, the shear matrix has determinant 1, indicating that it

doesn’t change the area of a square, even though it changes the shape (Figure 2).

The distortion matrix, on the other hand, has determinant kℓ and changes the area of a

square by that factor (Figure 3). If ℓ = 1/k then the determinant is 1 and there is no area

change. If k > 0 and ℓ < 0, then the determinant is negative, indicating that the plane has been

flipped. The same is true if k < 0 and ℓ > 0. If both k and ℓ are negative, then the determinant

is positive. Intuitively, the transformation flips the plane twice, so it’s really not flipped at all.

5 Inversion

In the real numbers, every non-zero number x has a multiplicative inverse x−1 = 1/x, meaning

that xx−1 = 1 = x−1x. Analogously, in the 2 × 2 matrices, every matrix M with non-zero

determinant has a multiplicative inverse M−1 such that MM−1 = I = M−1M . Intuitively,

M−1 is the transformation that undoes M , because

M−1Mv⃗ = Iv⃗ = v⃗

for all v⃗. Another way of looking at it is that M is the transformation that undoes M−1:

MM−1v⃗ = Iv⃗ = v⃗.

A matrix M with determinant 0 does not have an inverse M−1.

For 2 × 2 matrices, computing inverses is fairly easy, quick, and numerically stable. The

inverse of an M with detM ̸= 0 is

M−1 =

[
M00 M01

M10 M11

]−1

=
1

detM

[
M11 −M01

−M10 M00

]
.
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On the right side of that equation, multiplying the matrix by the number 1/ detM means

multiplying each entry of the matrix by that number — much like when you scale a vector by

a number.

Here’s a problem for you, to test your understanding. On paper, check that the expression

for M−1 satisfies MM−1 = I. Also, compute the inverses of the four examples given above

(rotation, shear, distortion, identity). Do the answers make geometric sense? Depending on

your math background, that last question might not be easy. Talk to me about it.

6 Solving Linear Systems

Here’s a common math problem: Given numbers a, b, c, d, g, h, find numbers x, y such that

ax+ by = g,

cx+ dy = h.

Those two equations can be rewritten as one equation of 2× 1 matrices,[
ax+ by

cx+ dy

]
=

[
g

h

]
,

which can in turn be rewritten using matrix multiplication:[
a b

c d

][
x

y

]
=

[
g

h

]
.

Let M be that 2× 2 matrix in there. So we’re trying to solve

M

[
x

y

]
=

[
g

h

]
.

If M−1 exists, then we can multiply the equation, on the left side of both sides, by M−1:

M−1M

[
x

y

]
= M−1

[
g

h

]
.

We do that because the left side of the equation simplifies down to the thing that we wanted:[
x

y

]
= M−1

[
g

h

]
.

Now we know what x and y are. In this way, matrices and their inverses help us solve systems

of linear equations.

(If M−1 does not exist, then there may be no solutions or, in rare cases, infinitely many.

That issue won’t arise much in this course.)

6


