Python Regular Expressions CS 254, Carleton College

This tutorial begins by comparing “textbook” regular expressions (TREs) to Python regular
expressions (PREs). It then goes into more detail about how to program with PREs. The
material here should be applicable, with a few tweaks, to other programming languages such as

Java and Perl. This tutorial is far from exhaustive. Here is an official reference:

http://docs.python.org/library/re.html

1 TREs in Python

There are three immediate differences between TREs and PREs.

First, a PRE doesn’t just produce “match” or “not match”; it produces match object that
describes how it matches. Second, by default a PRE doesn’t have to match the whole string;
matches to substrings are recorded as matches. Let’s make a wrapper function to hide these

differences. Enter the following code into the Python interpreter or a program file.

import re
def matches(regexp, string):

return re.search(r’\A(?:’ + regexp + r’)\Z’, string) != None

This matches () function takes in two strings — the first being a PRE and the second being a
string to match — and outputs either True or False, indicating a match or not. The function
does two important things to mimic our TRE conventions. First, it wraps the given PRE in
the special codes \A and \Z, which together force matches to whole strings, not just substrings.
Second, the function simply returns True or False, instead of a match object.

The third difference between TREs and PREs is in the regular expression syntax itself:
Because there is no U key on the keyboard, PREs use | instead of U. For example, the TRE
(abUcUd)T Ue* is entered into Python as the string (ablc|d)+|ex. (White space inside PREs
is taken seriously. Don’t put it there unless you really want it there.)

You should now be able to translate anything from the textbook into Python. For example,

to test whether (a U b)™c* matches ababcecab, enter

>>> matches(’ (alb)+c*’, ’ababcccab’)

2 Shortcuts and Special Characters

In moving beyond the textbook to programming problems, we will find a number of shortcuts
helpful. In addition to the + operator, which means “repeat 1 or more times”, PREs offer several

similar shortcuts:

e 7 means “repeat 0 times or 1 time, but no more”.

Python Regular Expressions CS 254, Carleton College

e {n} means “repeat exactly n times”.
e {m,n} means “repeat between m and n times”.

For example, the PRE a(bc){2,3} matches abcbc but not abc or abcabc.

Another convenience is the character class concept. For example, [aeiouA-C3-7] is equiv-
alent to alelilolulAIBICI3|415|6|7. The PRE [0-9a-zA-Z] matches exactly the alphanu-
meric characters. To define a character class that contains a hyphen, escape the hyphen with a
backslash. For example, [a\-e] is equivalent to al-|e.

PREs include a limited complementation operation, in that character classes can be com-
plemented using ~. For example, [“a-g] matches all characters other than those in [a-g]. For
a more useful example, " [“"]+" matches strings of length at least 3 that begin and end with "
and contain no " in between. It could be used to pick out string literals in a computer program.

The characters ., =, $, %, +, 7, {; },\, [, 1, |, () all have special meanings in PREs. So, if
you want your PRE to match any of these characters, you have to escape them with a backslash.
For example, to match single-word sentences, you might use the PRE [A-Z] [a-z]*x(\.[\?7]!).
There are also various special character sequences beginning with 7. See the Python documen-

tation for more detail.

3 Backslashes

The alphabet available to PREs is much larger than just [0-9a-zA-Z]. I’'m not sure, but I think
it contains all of ASCII and even all of Unicode. This means that you can access weird characters

such as the newline character. You typically enter a newline into a Python string like this:
>>> mystring = ’After this sentence is a newline character.\n’

If you really want a string containing the two characters \ and n, then you have to escape the

backslash with another backslash:

>>> mystring = ’After this sentence are two characters: backslash and n.\\n’
Another solution is to make a raw Python string:

>>> mystring = r’After this sentence are two characters: backslash and n.\n’

In short, the backslash is special metasymbol in Python strings, but you can turn off its spe-
cialness by prefacing the string with r.

This is handy, because the backslash is also a metasymbol in PREs. We have already seen
that \A and \Z in a PRE indicate that the match must occur at the start and end of the string.

Another special code is \w; it is the character class of all alphanumeric characters. Similarly, \d

Python Regular Expressions CS 254, Carleton College

matches decimal digits and \s matches whitespace characters. To match the backslash itself,

you use \\. So for example the Python command
>>> matches(r’\d{1,23\\\d{1,2\\\d{2,4}’, s)

returns True for strings s such as 9\11\2001 and 08\13\76. These are supposed to be dates,
which are usually written with slashes instead of backslashes. I've used backslashes just to
illustrate my point. And my point is that using a raw string saves me from having to enter this

craziness:
>>> matches (’\\d{1,2F\\\\\\d{1,21\\\\\\d{2,4}’, s)

I almost always use raw strings to enter PREs into Python.

4 Groups

PRE functions such as re.search() don’t just return whether the given regular expression
matched the given string. They tell us which parts of the regular expression matched which

parts of the string. These parts are called groups. They are delimited by (). For example,

>>> re.search(r’g*([abl*)gx’, ’gggabaabbbgabaaaa’).groups()
(’abaabbb’,)

Why did this result occur? Well, first the PRE matches the substring gggabaabbbg. (We haven’t
included the \A and \Z codes that force the whole string to match.) In this substring, the part
corresponding to the group ([ab]*) was abaabbb, so that was returned in the tuple of results.

A sophisticated PRE can contain multiple groups to extract multiple parts of the string. In
the following example, there are three groups. We ask the match object for a particular group.

We also ask it which indices in the string produced the substring that the group matched.

>>> mo = re.search(r’(ab*)c((de+)f)’, r’abbbbcdef’)
>>> mo.groups ()

(’abbbb’, ’def’, ’de’)

>>> mo.group (1)

’abbbb’

>>> mo.span(1)

(0, 5)

Sometimes you want to place parentheses into a PRE to express precedence, without declar-
ing that a group should be captured. PREs offer a simple way to make parentheses non-
capturing: Instead of (...), you enter (7:...). For example, compare this transcript to the

similar transcript above.

Python Regular Expressions CS 254, Carleton College

>>> re.search(r’ (ab*)c(?:(de+)f)’, r’abbbbcdef’).groups()
(’abbbb’, ’de’)

You can even refer to groups within the PRE, using the codes \1, \2, etc. For example,

>>> re.search(r’g+([ab]l+)g+\1g+’, ’gggabaabbbgabaabbbgggg’) .groups()
(’abaabbb’,)

Why did this happen? The group matches abaabbb, and this same substring is matched again
by the \1, so the whole PRE matches. And then the match object reports the string matched

by the group. Carefully compare that example to the following examples.

>>> re.search(r’g+([abl+)g+\1g+’, ’gggabaabbbgabaabbgggg’) .groups ()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: ’NoneType’ object has no attribute ’groups’
>>> re.search(r’g+([abl+)g+([ab]l+)g+’, ’gggabaabbbgabaabbbgggg’) .groups()
(’abaabbb’, ’abaabbb’)
>>> re.search(r’g+([abl+)g+([abl+)g+’, ’gggabaabbbgabaabbgggg’) .groups ()
(’abaabbb’, ’abaabb’)

5 Functions other than re.search

If you want to find all non-overlapping substrings that match a given regular expression, try
re.findall (). For example, the following code tries to gather all URLs contained in a string
of HTML. The entire HTML anchor element is matched, but only the URL within that element

is returned, because only it is in a group.
re.findall(r’<a\s+href\s*=\sx" ([""]+)">’, htmlString)

Python strings come with a rudimentary split() method, but the PRE library’s split ()

function is more powerful. In this simple example we split a string into sentences.

>>> re.split(xr’(\.[\?|!)’, ’Corn is great! Must the onions be carameliz
ed? Beyonce smiled at my houseplants.’)
[’Corn is great’, ’!’, ’ Must the onions be caramelized’, ’7?’, ’ Beyonc

e smiled at my houseplants’, ’.’, ’’]
You can also use PREs to alter the contents of strings. Here’s a simple search-and-replace.

>>> re.sub(r’clever’, ’not too bright’, ’The professor is clever.’)

’The professor is not too bright.’

