Day 26 Homework CS 254, Spring 2024

In our textbook, Theorem 7.44, Problem 7.26, and Problem 7.27 cover this material.

Definitions: For an undirected graph G, a vertex cover is a set of nodes such that every edge
is adjacent to at least one node in the set. Let VERTEX-COVER be the set of all strings (G, ¢),
where £ > 1 is an integer and G is an undirected graph that has an ¢-node vertex cover.

Here is a polynomial-time mapping reduction F' of 3SAT to VERTEX-COVER. Given the
encoding (¢) of a Boolean formula ¢ in 3CNF, F' does these steps:

1. Let m be the number of distinct variables in ¢, and let k£ be the number of clauses. Allocate

space for a graph G of 2m + 3k nodes and m + 6k edges.

2. For each distinct variable x in ¢, add nodes labeled z and 7, and join these two nodes

with an edge to form a “pair”. (So this step adds 2m nodes and m edges total.)

3. For each clause (z Vy V z) in ¢, add three nodes with those labels, and join these three
nodes with three edges to form a “triangle”. (Here, each of x, y, and z can be any variable

or its negation. This step adds 3k nodes and 3k edges.)

4. For each node among the triangles, connect that node to the unique node among the pairs

that has the same label. (This step adds 3k edges.)
5. Let £ = m + 2k, and output (G, {).

A.A. Pick a satisfiable ¢, show the G and ¢ that F' produces from that ¢, and identify an
¢-node vertex cover in G. (So it’s plausible that (¢) € 3SAT = F({¢)) € VERTEX-COVER.)

A.B. Pick an unsatisfiable ¢, show the G and ¢ produced, and explain why no ¢-node vertex
cover exists. (So it’s plausible that (¢) € 3SAT < F((¢)) € VERTEX-COVER.)

A.C. Show that the length of the string (G, ¢) is polynomial in the length n of the string (¢).
(So, because F' “doesn’t have to do much thinking beyond what’s needed to write (G, ¢)”, it’s
plausible that F' is polynomial-time.)

Definitions: Let ¢ be a 3CNF formula. An #-assignment is an assignment of truth values
to the variables in ¢, such that each clause has one true term (and two false terms) or two true
terms (and one false term). Let #SAT be the set of strings (¢), where ¢ is a 3CNF formula that
has an #-assignment. Notice that ASAT C 3SAT.

Here is a polynomial-time mapping reduction F' from 3SAT to #ASAT. Given the encoding
(¢) of a Boolean formula ¢ in 3CNF, F' does these steps:

1. Let k be the number of clauses in ¢. Allocate space for a new 3CNF formula 1 that has 2k

clauses, all of the variables of ¢, and k+ 1 new variables, which are called w1, ws, ..., wg, b.



Day 26 Homework CS 254, Spring 2024

2. Fori=1,...,k, let (x VyV z) be the ith clause in ¢. (Here, each of z, y, and z can be
any variable or its negation.) Add two clauses (x Vy V w;) A (w; V 2z V b) to 1.

3. Output (), where v is the 3CNF formula of 2k clauses that was just produced.

B.A. Pick a satisfiable ¢, show the v that F' produces from that ¢, and identify an -
assignment for .

B.B. Pick an unsatisfiable ¢, show the 1 produced, and explain why v has no #-assignment.

B.C. Prove that the logical negation of any #-assignment is also an #-assignment. (This
problem is relatively easy, but it’s useful for the next part of the problem.)

B.D. Prove that (¢) € 3SAT < F((¢)) € #SAT.

The formula v is about twice as large as the formula ¢, and F' doesn’t need to do much
thinking to construct i, so F' should be polynomial-time. Let’s not analyze the time complexity

of F' in more detail than that.

Definitions: In an undirected graph G, a cut is a partition of the nodes into two disjoint
subsets S and 7. The size of a cut is the number of edges that have one endpoint in S and
the other in 7. (Imagine drawing a line L through G and rearranging the nodes so that the
S-nodes are on one side of L and the T-nodes are on the other side. Then the size of the cut is
the number of edges that L “cuts”.) Let MAX-CUT be the set of strings (G, £) such that ¢ > 1
is an integer and G has a cut of size £ or greater.

Here is a polynomial-time mapping reduction F' from # SAT to MAX-CUT. Given the
encoding (¢) of a Boolean formula ¢ in 3CNF, F' does these steps:

1. Let m be the number of distinct variables in ¢, and let k£ be the number of clauses. Allocate

space for a graph G of 6mk nodes and 9mk? + 3k edges.

2. For each distinct variable z in ¢: Add 3k nodes labeled z and 3k nodes labeled T, and add

an edge connecting each z-node to each Z-node. (Total: 6mk nodes and 9mk? edges.)

3. For each clause (z VyV z) in ¢, add three edges connecting nodes labeled z, y, z into a

triangle. Do not use any node in more than one clause triangle. (Total: 3k edges.)
4. Let £ = ..., and output (G, ¥).

C. In the last step, what should ¢ be? Also, prove that (¢) € ASAT < F((¢)) € MAX-CUT.
(I recommend, but do not require, that you first do a couple of examples to build intuition, as

in our previous problems.)

Looking for more practice with polynomial-time mapping reductions? Study the reduction of

3SAT to SUBSET-SUM in our textbook. These reductions get easier, as you see more examples!



