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1 Review

Suppose that we’re working in n dimensions. Formally, let

∇ =

〈
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

〉
.

“Formally” means “manipulating symbols according to familiar rules, without worrying about

whether they mean anything”. We have to say “formally” because ∇ looks like a vector but

it’s not a vector; it’s some other weird kind of mathematical object. Anyway, formally, for any

scalar field f ,

∇f =

〈
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

〉
f

=

〈
∂

∂x1
f,

∂

∂x2
f, . . . ,

∂

∂xn
f

〉
,

which agrees with our usual notation for ∇f as the gradient of f . Similarly, for any vector field

F⃗ ,

∇ · F⃗ =

〈
∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn

〉
· ⟨F1, F2, . . . , Fn⟩

=
∂

∂x1
F1 +

∂

∂x2
F2 + . . .+

∂

∂xn
Fn,

which is the divergence of F⃗ . And it’s reasonable to ask, in the special case of n = 3, what

happens when we formally compute the cross product of ∇ with a vector field F⃗ :

∇× F⃗ =

〈
∂

∂x1
,

∂

∂x2
,

∂

∂x3

〉
× ⟨F1, F2, F3⟩

=

〈
∂F3

∂x2
− ∂F2

∂x3
,
∂F1

∂x3
− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2

〉
.

This vector field is the curl of F⃗ . To summarize, in R3 we have

grad f = ∇f,

curl F⃗ = ∇× F⃗ ,

div F⃗ = ∇ · F⃗ .

Each of these concepts has a geometric meaning. The gradient ∇f tells you, at each x⃗, how

to climb the hill defined by f as quickly as possible there. The curl ∇× F⃗ tells you, at each x⃗,

how much F⃗ rotates or curls there. The divergence ∇· F⃗ tells you, at each x⃗, whether F⃗ spreads

out or comes together there. See our Math 211 Mathematica notebooks for many examples.

These concepts also have many applications. For example, almost everything that we en-

counter in daily life is a consequence of electromagnetism, which (at least in its pre-quantum
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theory) is governed by Maxwell’s equations. In the simplest conditions, these equations relate a

time-dependent vector field E⃗ for electricity and a time-dependent vector field H⃗ for magnetism

as follows.

div E⃗ = 0, div H⃗ = 0, curl E⃗ = − ∂

∂t
H⃗, curl H⃗ =

∂

∂t
E⃗.

For another application, suppose that you’re studying how water flows (through a pipe, along

the hull of a boat, etc.). The flow is quantified as a velocity field v⃗ = v⃗(t, x⃗) and a pressure field

p = p(t, x⃗), which (under reasonable assumptions, and for certain constants δ, ν) are governed

by the Navier-Stokes equations

∂v1
∂t

+ v⃗ · ∇v1 = −1

δ
∇p+ ν∇ · ∇v1,

∂v2
∂t

+ v⃗ · ∇v2 = −1

δ
∇p+ ν∇ · ∇v2,

∂v3
∂t

+ v⃗ · ∇v3 = −1

δ
∇p+ ν∇ · ∇v3,

∇ · v⃗ = 0.

So I hope that you are starting to believe me, that grad, curl, and div are important in science

and engineering.

2 Stokes’s theorem

The table below summarizes five big theorems of calculus, three of which we have studied.

dimension flat version curved version

1
∫
[a,b] F

′(x1) dx1 = F (b) +−F (a).
∫
C ∇f · dx⃗ = f(x⃗(b)) +−f(x⃗(a)).

2
∫∫

D
∂F2
∂x1

− ∂F1
∂x2

dx1 dx2 =
∫
C F⃗ · dx⃗.

∫∫
S curl F⃗ · dS⃗ =

∫
C F⃗ · dx⃗.

3
∫∫∫

E div G⃗ dx1 dx2 dx3 =
∫∫

S G⃗ · dS⃗.

The upper-left theorem is the fundamental theorem of calculus. The upper-right theorem is

the fundamental theorem of calculus for line integrals. Both the interval [a, b] and the curve C

are one-dimensional. The interval [a, b] is essentially a curve C that happens to be “flat”.

The middle row of the table features Green’s theorem on the left and Stokes’s theorem

(Section 16.8) on the right. Both the planar region D and the surface S are two-dimensional.

The planar region D is essentially a surface S that happens to be flat.

The third row of the table features the divergence theorem (Section 16.9) on the left. It

concerns an integral over a solid three-dimensional region E, and another integral over the

surface S that bounds E. The right side of the third row is left blank, because the corresponding

theorem over three-dimensional “curved solids” is rarely taught in calculus courses.

All five theorems listed in the table follow a single pattern. In each equation, the right

integrand is a function, and the left integrand is some kind of derivative of that function. In
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each equation, the left integral is over an n-dimensional space, and the right integral is over its

(n− 1)-dimensional boundary. (The boundary of a one-dimensional space is a zero-dimensional

space, which is a set of discrete points. Those points are assigned positive and negative signs

according to a certain rule. An integral over a set of discrete points is simply a sum.)

The table doesn’t end at three dimensions. There is a way to systematize everything that

we’ve learned, so that it extends to curved or flat spaces of all dimensions. The integrand and

the dx1 dx2 . . . get combined into an object called a differential form, denoted something like

ω. A general derivative of this ω, denoted dω, can be rigorously defined. The boundary of a

space X is denoted ∂X. Then, under appropriate conditions, we obtain a single, grand theorem

that works in all dimensions: ∫
X
dω =

∫
∂X

ω.

It’s called Stokes’s theorem, in honor of the original Stokes’s theorem.

We can’t possibly learn all of this stuff in Math 211. At Carleton College, sometimes it’s

learned in special topics courses such as Math 295 or Math 395. Sometimes Comps projects are

done on this topic. Most Math majors graduate without learning it. I first learned about it in

graduate school. So why do I mention it in Math 211? To emphasize that there is a pattern

to the five theorems. To give you a hint that, if you go on in mathematics, you will find the

subject getting more abstract but, surprisingly, simpler.

3 de Rham cohomology

Let’s return to three dimensions specifically. Let S be the set of all scalar fields f : R3 → R
that are smooth — meaning, every derivative that you can imagine, such as fx1x3x3x2x1x1x1x2x2 ,

is continuous. Let V be the set of all vector fields F⃗ : R3 → R3 that are smooth in each of the

three components. Then the gradient, curl, and divergence fit into this diagram of functions:

S grad−−−→ V curl−−→ V div−−→ S.

In other words, the gradient of a smooth scalar field is a smooth vector field, the curl of a smooth

vector field is a smooth vector field, and the divergence of a smooth vector field is a smooth

scalar field.

Now here’s an important fact: For any vector field F⃗ , div(curl F⃗ ) = 0. In other words, if

div G⃗ ̸= 0, then G⃗ is not the curl of any vector field F⃗ .

Exercise A: Prove the claim just made, that div(curl F⃗ ) = 0 everywhere, for any F⃗ .

What about the converse? Are there any divergence-0 vector fields G⃗ that are not curls?

Surprisingly, the answer depends on whether there are any holes in the domain of G⃗. The crucial
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example is

G⃗ =
x⃗

|x⃗|3/2

(or anything proportional to it, such as the Newtonian gravitational force field). It is undefined

at the point 0⃗. Everywhere else, its divergence is 0. However, there is no F⃗ , defined everywhere

that G⃗ is defined, such that curl F⃗ = G⃗.

Exercise B: Here’s a sketch of the proof that the G⃗ just defined cannot be a curl. Consider

the flux of G⃗ across the unit sphere. Intuitively, do you think that it’s positive, negative, or

zero? Then, assuming that G⃗ = curl F⃗ , this flux is the left side of the original Stokes’s theorem.

So what does Stokes’s theorem say about it?

Here’s another important fact: For any scalar field f , curl(grad f) = 0⃗ everywhere. In other

words, if curl F⃗ ̸= 0⃗, then F⃗ is not the gradient of any scalar field f .

Exercise C: Prove the claim just made, that curl(grad f) = 0⃗ everywhere, for any f .

What about the converse? Are there any curl-⃗0 vector fields F⃗ that are not gradients? Again,

the answer depends on holes in the domain of F⃗ . The crucial example is

F⃗ =
⟨−x2, x1, 0⟩
x21 + x22

.

This vector field is undefined along the line x1 = x2 = 0. Everywhere else, its curl is 0⃗. However,

there is no f , defined everywhere that F⃗ is defined, such that grad f = F⃗ .

Exercise D: Prove the claim just made, that this specific F⃗ cannot have a potential function.

(Hint: If it did, then that would imply the existence of a potential function for a certain two-

dimensional vector field, and we already know that that potential function cannot exist.)

Thus far, we’ve increased our understanding of G⃗ with divergence 0 and F⃗ with curl 0⃗.

Maybe we should study f with gradient 0⃗ too? If grad f = 0⃗ everywhere, then f must be

constant, right? Actually, the answer depends on holes in the domain of f .

Exercise E: By allowing yourself to place holes in the domain of f , find a non-constant f

such that grad f = 0⃗ everywhere f is defined. (Hint: So far we’ve seen point-shaped holes and

line-shaped holes. What’s next in that sequence?)

At the other end of the diagram, there should be something about scalar fields that aren’t

divergences, right? But there’s a twist:

Exercise F: Prove that every scalar field f the divergence of some vector field F⃗ .
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In summary, if we are studying a subset of R3, then the existence of scalar fields and vector

fields with certain properties on that subset is intimately connected to whether that subset has

holes, and how those holes are shaped (and how many there are). In other words, there is an

interplay between delicate, finicky questions of calculus and simple, crude questions of topology

(the study of how spaces connect up on themselves). In higher mathematics, these ideas get

systematized in a concept called de Rham cohomology, which like the general Stokes’s theorem

is quite lovely.
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