
Finding Periods and Factors CS 358, Winter 2022

After a few runs of Shor’s core subroutine with continued fractions, we have a c/d in lowest

terms such that |b/2n − c/d| ≤ 2−(n+1). And we know that c/d = `/p, and we’re trying to find

p. If ` and p are coprime — and the chances are not bad — then c = ` and d = p and we’re

done. But ` and p might not be coprime, in which case c and d are merely divisors of ` and p

respectively. So check that kd ≡ 1 (mod m). If not, then run the core subroutine again, get a

c′/d′, and compute the least common multiple lcm(d, d′). This LCM must divide p, and there’s

a good chance that it equals p. So check that klcm(d,d′) ≡ 1 (mod m). If so, then p = lcm(d, d′).

If not, then start all over again.

There are many ways to tweak the details, but here is one complete, explicit rendering of

the period-finding algorithm.

1. Input k and m.

2. Let n be the smallest integer such that 2n ≥ m2.

3. While p is unknown:

(a) Set d = m and d′ = m.

(b) While d ≥ m:

i. Run the core subroutine to obtain b.

ii. Run continued fractions on x0 = b/2n, with larger and larger j, until you obtain

c/d such that either |b/2n − c/d| ≤ 2−(n+1) or d ≥ m.

(c) If kd ≡ 1 (mod m), then output p = d.

(d) While d′ ≥ m:

i. Run the core subroutine to obtain b.

ii. Run continued fractions on x0 = b/2n, with larger and larger j, until you obtain

c′/d′ such that either |b/2n − c′/d′| ≤ 2−(n+1) or d′ ≥ m.

(e) If kd
′ ≡ 1 (mod m), then output p = d′.

(f) Compute lcm(d, d′) = d · d′/ gcd(d, d′).

(g) If klcm(d,d′) ≡ 1 (mod m), then output p = lcm(d, d′).

Apparently the probabilities are such that very few iterations should be needed. For example,

Nielsen and Chuang (2000, p. 231) argue that p = lcm(d, d′) with probability at least 1/4.

Now suppose that m = ab, where a and b are distinct primes. The RSA cryptosystem is

based on this kind of m, and knowing the factors of m breaks the cryptosystem. It turns out that

period-finding and factoring are similar enough that the former gives a solution to the latter, as

follows.

1

Finding Periods and Factors CS 358, Winter 2022

Pick a random k such that 2 ≤ k < m, and compute gcd(k,m). If the GCD is not 1, then

congratulations; you just stumbled on a factor of m. So assume that k is coprime to m. Use the

period-finding algorithm to find the smallest p ≥ 1 such that kp ≡ 1 (mod m).

Now suppose that two pleasant things happen: p is even, and kp/2 6≡ −1 (mod m). Because

p is even, p/2 is an integer. We know that kp/2− 1 is not divisible by m, because if it were then

we’d have kp/2 ≡ 1 (mod m) and p would not be the period. Meanwhile, to say that kp/2 6≡ −1

(mod m) is to say that kp/2 + 1 is not divisible by m. So m does not divide kp/2− 1 or kp/2 + 1,

but m divides their product (kp/2 − 1)(kp/2 + 1) = kp − 1. It follows that one of the primes a, b

divides kp/2− 1 and the other divides kp/2 + 1. So the GCD of m and either kp/2− 1 or kp/2 + 1

produces either a or b.

If one (or both) of the pleasant things doesn’t happen, then the number coming out of the

GCD may not be a divisor of m. So proceed under the assumption that both pleasant things

happen, but check your answer at the end, and re-run the algorithm if the answer is incorrect.

Some basic number theory (Mermin, 2007, Appendix M) shows that the probability of both

pleasant things happening is at least 1/2. So we expect to try approximately two ks, and the

probabilistic “worst case” isn’t bad.

2

