
4× 4 Matrices CS 311, Fall 2022

This tutorial teaches you about 4×4 matrices. It begins with multiplication and application

to vectors. It also describes how 4 × 4 matrices represent rotations and translations of three-

dimensional space. It includes two ways of making 3× 3 rotation matrices. It assumes that you

have already studied our 2× 2 and 3× 3 matrix tutorials and both of our vector tutorials.

1 Multiplication

Multiplication of 4× 4 and 4× 1 matrices is much like multiplication of smaller matrices. If M

is 4× 4 and ~v is 4× 1, then

M~v =


M00 M01 M02 M03

M10 M11 M12 M13

M20 M21 M22 M23

M30 M31 M32 M33




v0

v1

v2

v3

 =


M00v0 +M01v1 +M02v2 +M03v3

M10v0 +M11v1 +M12v2 +M13v3

M20v0 +M21v1 +M22v2 +M23v3

M30v0 +M31v1 +M32v2 +M33v3

 .
If N is also 4× 4, then MN is a 4× 4 matrix whose jth column is M times the jth column of

N . In other words,

(MN)ij =
3∑

k=0

MikNkj = Mi0N0j +Mi1N1j +Mi2N2j +Mi3N3j .

Geometrically, M~v is the vector ~v after being transformed by the transformation M , and MN

is the composite transformation resulting from N followed in time by M . As always, matrix

multiplication is associative and not commutative. The 4× 4 identity matrix

I =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


satisfies I~v = ~v and IM = M = MI for all M and ~v.

2 Homogeneous coordinates

Now we implement three-dimensional rotation and translation using 4× 4 matrices, much as we

implemented two-dimensional rotation and translation using 3× 3 matrices. Any 3× 1 vector ~v

gets a 1 appended, and any 3× 3 matrix M gets a row and column of 0s and 1s appended:

~v =


v0

v1

v2

1

 , M =


M00 M01 M02 0

M10 M11 M12 0

M20 M21 M22 0

0 0 0 1

 .

1

4× 4 Matrices CS 311, Fall 2022

Translation by a vector ~t manifests as a 4× 4 matrix

T =


1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1

 .

The composite transformation resulting from M followed by T is

TM =


1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1




M00 M01 M02 0

M10 M11 M12 0

M20 M21 M22 0

0 0 0 1

 =


M00 M01 M02 t0

M10 M11 M12 t1

M20 M21 M22 t2

0 0 0 1

 .

In computer graphics, we usually use this framework to express rotation followed by trans-

lation. So M is a 3× 3 matrix (before it is homogenized) that expresses rotation. Rotations are

much more complicated in three dimensions than in two, and there are many systems for how

to describe rotations. We describe two systems in later sections of this tutorial.

3 Inverses

Sometimes we need to know the inverse of a composite transformation TM . Intuitively, if one

transformation is rotation by M followed by translation by ~t, then the inverse transformation

should be translation by −~t followed by rotation by M−1. Conveniently, rotation matrices are

easy to invert. Define the transpose of a 3 × 3 matrix M to be the 3 × 3 matrix M> obtained

by reflecting M across its diagonal:

M> =


M00 M01 M02

M10 M11 M12

M20 M21 M22


>

=


M00 M10 M20

M01 M11 M21

M02 M12 M22

 .
If the 3×3 matrix M represents a rotation, then the inverse rotation happens to be the transpose:

M−1 = M>. So inversion is easy, fast, and numerically robust. And the same calculation works

2

4× 4 Matrices CS 311, Fall 2022

when M is homogenized, too. Skipping some details, it turns out that

(TM)−1 = M−1T−1

=


M00 M01 M02 0

M10 M11 M12 0

M20 M21 M22 0

0 0 0 1


−1 

1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1


−1

=


M00 M10 M20 0

M01 M11 M21 0

M02 M12 M22 0

0 0 0 1




1 0 0 −t0
0 1 0 −t1
0 0 1 −t2
0 0 0 1



=


M00 M10 M20 −M00t0 −M10t1 −M20t2

M01 M11 M21 −M01t0 −M11t1 −M21t2

M02 M12 M22 −M02t0 −M12t1 −M22t2

0 0 0 1



=


M00 M10 M20

(
−M>~t

)
0

M01 M11 M21

(
−M>~t

)
1

M02 M12 M22

(
−M>~t

)
2

0 0 0 1

 .

4 Describing rotations in terms of an orthonormal basis

Suppose that we have two length-1, three-dimensional vectors ~u and ~v that are perpendicular to

each other. We also have two length-1, three-dimensional vectors ~a and ~b that are perpendicular

to each other. There is a unique rotation of three-dimensional space that transforms ~u to ~a and

~v to ~b. We wish to find the 3× 3 matrix M that describes that rotation.

We compute the cross product ~w = ~u × ~v and form the 3 × 3 matrix R with columns ~u, ~v,

~w. Similarly, we form a 3× 3 matrix S with columns ~a, ~b, ~a×~b. Then we compute M = SR>.

That’s it. To understand what’s going on, try applying M to ~u and to ~v, symbolically. You

should get ~a and ~b.

5 Describing rotations in terms of angle and axis

In this section, we discuss how to compute a 3×3 rotation matrix in terms of an axis of rotation

and an angle of rotation about that axis.

First we specify a length-1, three-dimensional vector ~u to serve as the axis of rotation. We

3

4× 4 Matrices CS 311, Fall 2022

form the matrix

U =


0 −u2 u1

u2 0 −u0
−u1 u0 0


and compute the square

U2 = UU =


−u12 − u22 u0u1 u0u2

u0u1 −u02 − u22 u1u2

u0u2 u1u2 −u02 − u12

 =


u0

2 − 1 u0u1 u0u2

u0u1 u1
2 − 1 u1u2

u0u2 u1u2 u2
2 − 1

 .
The second piece of information that we specify is the rotation angle α. The matrix M that

we build will rotate space about ~u, through the angle α, counter-clockwise in a right-handed

sense. To understand what this means, hold your right hand in the air, with its fingers curled

but its thumb pointing out. The thumb is the axis. If α > 0, then the fingers point in the

direction of rotation. If α < 0, then the fingers point opposite to the direction of rotation. The

amount of rotation is |α|.
Then, according to Rodrigues’ rotation formula, the 3×3 matrix M that represents rotation

through the angle α about the axis ~u is

M = I + (sinα)U + (1− cosα)U2.

The identity matrix I here is 3×3, not 4×4. The (sinα)U term is the matrix U with each of its

entries multiplied by the number sinα. Similarly, (1 − cosα)U2 equals U2 scaled by 1 − cosα.

Finally, M is the matrix sum of those three terms — meaning that they are added entry-by-entry.

In other words,

Mij = Iij + (sinα)Uij + (1− cosα)(U2)ij .

To get a sense of how Rodrigues’ formula works, you might try computing the special case

where α = 0. You might also try the special case u0 = 0, u1 = 0, u2 = 1. You might also try

computing M~u symbolically, under no special assumptions. Do the answers make sense?

4

