
Kolmogorov Complexity

Carleton College, CS 254, Fall 2013, Prof. Joshua R. Davis

based on Sipser, Introduction to the Theory of Computation

1. Introduction

Kolmogorov complexity is a theory of lossless data compression. It ponders the existence of

compression/decompression schemes, in which long strings of data are compressed into short

strings, that can be decompressed back into their longer versions. Kolmogorov complexity is

also a theory of information. Intuitively, the length of a compressed string is a measure of how

much information the uncompressed string contains. To get an idea of what we mean, consider

the uncompressed strings

01,

0111101011000010100000101111111111101001101010100000000110111100000101.

Both strings have length 70. The first string can be described succinctly: “repeat ‘01’ 35 times”.

In contrast, the second string does not have any apparent pattern. There is no obvious way to

describe it, other than just laying out the whole string. It seems to contain more information

than the first string does.

We begin with a minimal assumption: The process of decompressing a compressed string into

its uncompressed version should be algorithmic. Therefore, we define a decompression scheme to

be a deterministic Turing machine F that halts on all inputs. This F takes in an input string w,

which we regard as the compressed string, and outputs the corresponding uncompressed string

F (w) (as the contents of its tape upon halting). For any x, any string w such that F (w) = x is

called a description of x. Let dF (x) be the minimal description of x, according to lexicographic

order. The Kolmogorov complexity KF (x) is the length of the minimal description of x.

Throughout this tutorial, all strings are taken over the alphabet {0, 1}. Whenever we need

to represent a non-negative integer m as a string 〈m〉, we do so in binary. In particular, |〈m〉| ≤
log2m+ 1 for all m ≥ 1. These choices have no serious effect on the theory.

Theorem 1.1. Under any scheme F , for any string length m, there are incompressible strings

— meaning, strings x such that KF (x) ≥ |x|.

Proof. Let m ≥ 1 be any positive string length. There are 2m − 1 strings of length less than

m, which, when fed to F , can produce at most 2m − 1 decompressed strings. But there are 2m

strings of length m. Therefore, at least one string of length m is incompressible. �

2. The default scheme

Let’s define a particular decompression scheme F . This F takes as input 〈M,w〉, where M is

a Turing machine and w is an input for M , all encoded into bits according to some pre-arranged
1

Kolmogorov Complexity CS 254, Fall 2013

system. This F runs M on w until it halts (if ever). Then F halts, with its tape containing the

same contents as M ’s final tape.

It is conventional to assume that the encoding 〈〉 is such that w is given explicitly at the end

of 〈M,w〉. That is, 〈M,w〉 consists of some encoding of M , followed by some separator mark,

followed by w. In particular, |〈M,w〉| = |〈M, 〉|+ |w|.
This scheme will be our default. When we write d and K without any subscript, we mean

this scheme.

Example 2.1. Let M be the Turing machine that, on input w, produces 35 concatenated copies

of w on its tape, and then halts. Then 〈M, 01〉 is a description of the first 70-bit string given

above. The length of 〈M,w〉 is |〈M, 〉|+ 2.

Our next example expresses the idea that d(x) should never be much longer than x itself,

because “here is the string x” should always be a description of x.

Example 2.2. There exists a constant c such that for all x, K(x) ≤ c+ |x|.

Proof. Let M be a Turing machine that immediately halts. Let c = |〈M, 〉|. Then, for any string

x, 〈M,x〉 is a description of x, of length |〈M,x〉| = |〈M, 〉| + |x| = c + |x|. Thus the minimal

description of x can be no longer than c+ |x|, and K(x) ≤ c+ |x|. �

This next example says that xx should not require much more description than x.

Example 2.3. There exists a constant c such that for all x, K(xx) ≤ c+ |x|.

Proof. Let M be a Turing machine that repeats its input twice on its tape and then halts. Let

c = |〈M, 〉|. Then, for any string x, 〈M,x〉 is a description of xx, of length c+ |x|. �

Now that we have a taste for how compression and decompression work, let’s prove a result

that says that our default scheme is about as good as any other.

Theorem 2.4. For any scheme F there exists a constant c such that K(x) ≤ c+KF (x).

Proof. Let c = |〈F, 〉|. Then 〈F, dF (x)〉 is a description of x in the default scheme. Its length is

|〈F, 〉|+ |dF (x)| = c+KF (x). �

3. Intermediate Results

Henceforth we shall work only with our default scheme. For any c ≥ 0, we say that a string

x is incompressible by c if K(x) > |x| − c. The notion of incompressibility introduced earlier

is incompressibility by 1. This next theorem gets at the idea that d(x), being the minimal

description of x, should itself be incompressible.

Theorem 3.1. There exists a constant c such that for all x, d(x) is incompressible by c.

Proof. Let N be a Turing machine that, on input 〈M,w〉, does the following steps.
2

Kolmogorov Complexity CS 254, Fall 2013

(1) Run M on w.

(2) If the output of M is not of the form 〈P, y〉, then reject.

(3) If the output is of the form 〈P, y〉, then run P on y and halt with that output.

Let c = |〈N, 〉|+ 1. Now suppose, for the sake of contradiction, that x is a string such that d(x)

is compressible by c. Then |d(d(x))| ≤ |d(x)| − c. But 〈N, d(d(x))〉 is a description of x, and its

length is

|〈N, d(d(x))〉| = |〈N, 〉|+ |d(d(x))| ≤ (c− 1) + |d(x)| − c = |d(x)| − 1.

Therefore K(x) ≤ |d(x)| − 1, which contradicts the definition of K(x) = |d(x)|. �

Recall that this whole theory is founded on a mild assumption: that decompression should be

algorithmic. Under that assumption, this next theorem shows that optimal compression cannot

be algorithmic. (Perhaps we should place more constraints on decompression, to arrive at a

theory in which decompression and optimal compression are both algorithmic?)

Theorem 3.2. The Kolmogorov complexity is not computable. In other words, there does not

exist a Turing machine M that, given any input x, halts with 〈K(x)〉 on its tape.

Proof. Suppose, for the sake of contradiction, that such an M exists. Build a decider N that, on

input 〈m〉, outputs some string x satisfying K(x) ≥ m. (N tries all strings x of length m, using

M to compute K(x), until it finds an x such that K(x) ≥ m. Our first theorem guarantees that

such an x will be found.) Now let m be a number large enough that

m− log2m− 1 > |〈N, 〉|,

and let x be the output of N on input 〈m〉. Then 〈N,m〉 is a description of x, of length

|〈N,m〉| = |〈N, 〉|+ |〈m〉| < (m− log2m− 1) + (log2m+ 1) = m.

So K(x) < m. On the other hand, K(x) ≥ m, by the definition of N . This contradiction implies

that K is not computable. �

4. Random Strings

In this section, we explain the notion introduced earlier, that a “random” string has no

pattern and hence should not be compressible. A property of strings over {0, 1} is a function

f : {0, 1}∗ → {True,False}. A property f is said to hold for almost all strings if

lim
n→∞

#{x : |x| = n, f(x) = False}
#{x : |x| = n}

= 0.

Intuitively, f is True for “typical” strings x and False for “special cases” of x. If you select a

string x randomly, then f(x) = True with high probability. As n → ∞, the probability that

a randomly chosen string x of length n will have f(x) = True goes to 1. Examples of such f

include

• “x contains at least 40% 0s and at least 40% 1s.”
3

Kolmogorov Complexity CS 254, Fall 2013

• “the longest run of 0s in x has length between 0.5 log2 |x| and 1.5 log2 |x|.”

This notion allows us to investigate properties of random strings without really doing any prob-

ability theory.

The following purely mathematical lemma shows that we can replace “=” with “≤” in certain

parts of the above definition. Sipser uses this fact without proof. You may want to skip the

proof on a first reading.

Lemma 4.1. Let f be a property that holds for almost all strings. Then

lim
n→∞

#{x : |x| ≤ n, f(x) = False}
#{x : |x| ≤ n}

= 0.

Proof. Let ε > 0. We wish to show that there exists N such that for all n ≥ N

#{x : |x| ≤ n, f(x) = False}
#{x : |x| ≤ n}

< ε.

For the sake of brevity, let Ln = #{x : |x| = n, f(x) = False}. Because f holds for almost all

strings, there exists an M such that for all n > M ,

#{x : |x| = n, f(x) = False}
#{x : |x| = n}

<
ε

2
.

That is, Ln <
ε
22n for all n > M . Pick N large enough so that

M∑
i=0

Li <
ε

2

(
2N+1 − 1

)
.

Then for all n ≥ N

#{x : |x| ≤ n, f(x) = False} =

M∑
i=0

Li +

n∑
i=M+1

Li

<
M∑
i=0

Li +
n∑

i=M+1

ε

2
2i

<
ε

2

(
2N+1 − 1

)
+
ε

2
(2n+1 − 1)

≤ ε
(
2n+1 − 1

)
= ε #{|x| ≤ n}.

This proves the lemma. �

The following theorem says, roughly, that long incompressible strings have every property

that holds for almost all strings. In this sense, they are “random”.

Theorem 4.2. Let f be a computable property that holds for almost all strings. Let c ≥ 1. Then

there exists an N such that f(x) = True for all x such that |x| ≥ N and x is incompressible by

c.
4

Kolmogorov Complexity CS 254, Fall 2013

Proof. If f is False on only finitely many strings, then f is true for all longer strings, and the

theorem is obviously true. Henceforth assume that f is False on infinitely many strings. Denote

these strings s0, s1, s2, . . . in lexicographic order.

For any string x in the sequence s0, s1, s2, . . ., let ix be its index in the list. That is, ix is the

unique number such that six = x. Let M be a Turing machine that on input 〈i〉 outputs si.

(How would you design M , using the fact that f is computable?) Then 〈M, ix〉 is a description

of x.

Fix c ≥ 1. By the lemma, there exists a large N so that for all n ≥ N
#{x : |x| ≤ n, f(x) = False}

#{x : |x| ≤ n}
<

1

2c+|〈M,〉|+2
.

Using the fact that #{x : |x| ≤ n} = 2n+1 − 1, we have

#{x : |x| ≤ n, f(x) = False} < 2n+1

2c+|〈M,〉|+2
= 2n−c−|〈M,〉|−1.

If x is any string of length n ≥ N such that f(x) = False, then

ix < 2n−c−|〈M,〉|−1

and

|〈ix〉| ≤ n− c− |〈M, 〉|.

Therefore

K(x) ≤ |〈M, ix〉| ≤ |〈M, 〉|+ n− c− |〈M, 〉| = n− c.

So x is compressible by c. In other words, any x of length at least N that is incompressible by

c satisfies f(x) = True. �

5

