Exam C Solutions Math 211, Fall 2014, Carleton College

A. Let ¥ = (0,2,0) — (1,0,0) = (—1,2,0) and @ = (0,0,3) — (1,0,0) = (—1,0,3). Then
i =0 x W = (6,3,2) is perpendicular to the plane, with length 7. Thus 7i/|7i| = (6/7,3/7,2/7)
is a unit vector perpendicular to the plane. [The negation of that answer is an equally good

answer. |

B. By stretching our usual circle parametrization, we can parametrize the ellipse as ¢(t) =
(2cost,3sint). Notice that & (t) = (—2sint,3cost) is tangent to the ellipse and hence @ =

(—3cost, —2sint) is normal to the ellipse. Notice also that 7 points “into” the curve of the ellipse,

and hence is a positive multiple of the normal vector N. Because 77| = V9cos2t + 4sin?t =
V4 + 5cos? t, we conclude that
(—3cost,—2sint)

N:
V4 +5cos?t

C. [This is similar to a homework problem. Specifically, this problem relates to Day 22 Problem
B exactly as Day 24 Problem B relates to Day 22 Problem A.] Recall from homework the product
rule for divergence:

div(fF)=Vf-F + fdivF.

Therefore, for a region W of 3D space,

//Wdiv(fﬁ) dV://WVf'ﬁdV+//WfdivﬁdV

By the divergence theorem, the term on the left equals [, aw fﬁ ) - ds. Rearranging the terms

a bit, we have an integration by parts formula

[ff o= [, o0 [f] 55 7
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D1. Well,
[0, | 0, Fi
curl (curl F) = Oy | X oy | X | Fo
RZ 0, F3
(0. ] [o,/-0.F
= 8y X 0., — 0. F3
| 0. | | OuBh — Oyl

ay:pFQ - anyl - azzFl + aza:F3
- 8zy-F3 — 02 F5 — Oy Fo + 8czzy-Fl
L aszl - ameS - any3 + 8yzF2

8x:pF1 + amyF2 + a:szB - ax:pFl - any‘l - azzFl
= Bnyl + 8ny2 + 8yZF3 — Oy Fy — 8ny2 — OguFo
L azacFl + azyFQ + 8zz}?i% - a:r;a:F?) - 8ny3 - azzf73

8, (divF) — AF
= | 9,(divF) — AF,
| 0.(divF) — AFy
= V(divF) — AF

D2. Taking the curl of Maxwell’s third equation and using problem D1, we have

V(divE) — AE = curl (—86?) .

On the left side, the first term vanishes because of Maxwell’s first equation. On the right side,

0
ot

Therefore

commutes with curl, because they involve different derivatives. [Compute this out if you like.]

_AE = —chrl B.
ot

Plugging Maxwell’s fourth equation into the right side produces the wave equation.
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E. Let f(a, ) =sina + sin 8 + sin(m — o — ). The first and second partial derivatives are

% = cosa— cos(m —a— B),

gg = cosf — cos(m — a — f3),
%g% = —sina —sin(r —a — f),
;ng — —sing—sin(r—a— B),
(jﬁgi = —sin(r—a—fB).

The critical points occur where % = % = 0, so where cosa = cos(m — o — 3) = cos 3. Because

«, B, and m — a — 8 are all non-negative, the unique critical point is

a=0F=n/3=1—a—-p.

Now we perform the second derivative test. At the critical point, %g—i = %g—é = —/3 and
2
%g—i = —/3/2. Because a%g—i%% — (%%) = 3 —3/4 > 0, the critical point is a local

maximum or minimum. Because %g—é < 0, it must be a local maximum. The value of f at

this point is 3v/3/2. If we insist that «, 3,7 > 0, then we are finished, because the domain of
optimization has no boundary. If we allow one of the angles to degenerate to 0, then the other
two angles go to 7/2, and f has the value 2, which is less than its value at the critical point.

Therefore, even if we consider degenerate triangles, f is maximized at o = § = v = 7/3.

F1. Well,

2= ((z+1iy)®) = (@ — ) +1i(22y))* = (2" — y*)* — 42%y°) +i(4(2® — y*)ay).
Therefore the vector field is

(2% — y?)? — 422y + 1, 4(2% — yH)zy + ca).

F2. The black part of the fractal, representing those values of ¢ for which (0,0) never escapes,
consists of just the origin (0,0). Every other point in the plane is non-black. These points are
colored according to their distance from the origin, with the colors changing more quickly as we

approach the origin. Here is a plot of the fractal in [—2,2] x [—2,2].



Exam C Solutions Math 211, Fall 2014, Carleton College

G. [I'll omit the sketch.] The integral to compute is
/ / / r+2ydzdyde =

1 T
/ 22 + 2zy dy dz
x2

[:c Y+ xy ]y ; dx

I
S~~~

Gl

H. Well,

) —% oD + 0111 + 0yT12 + 0.T13
—;VP +V-T = | —20yp+ 8;Tor + 0yTaz + . To
—,l,azp + 0,131 + 0yT32 + 0,133

0x(T11 — %p) + 0yTi2 + 0,113
= | 0121 + Oy(Tr2 — %p) + 0. Tss
| 0151 + 0y T + 0-(Th3 — ,l)p)
= V.U,

where
Ty — % p T T3

U= T Too — %P Tos
131 T30 T33 — %P



Exam C Solutions

Math 211, Fall 2014, Carleton College

I. Let S be the portion of the ellipsoid (x/4)% + (y/3)? + (2/2)? = 1 where z,y,z < 0. Orient S
so that it has upward-pointing normals. Compute the flux of F= (0,0, z) across S.

We parametrize the ellipsoid by

G(¢,0) =

Then

(4sin ¢ cos b, 3sin ¢psin b, 2 cos @).

(4cos ¢ cosb,3cospsinb, —2sin @),
(—4sin ¢sind, 3sin ¢ cos b, 0),
ég X éd,

= (—6sin® ¢ cos 6, 8sin? ¢ sin @, —12sin ¢ cos ¢).

Let’s check that we have oriented 7i correctly. For example, the point (—4,0,0) is on S. At that

point, ¢ = /2 and € = 7, so @ = (6,0,0). This normal vector points “into” the ellipsoid, and

hence 7 is upward-pointing on S. The flux is

//ﬁ.d§ -
S

Let’s check that the sign is correct

the flux to be negative.

/2 pmo
[ [ F@o.0) i, o do
T /2
3n/2 pm
/ / 2cos ¢ - —12sin ¢ cos ¢ do db
T w/2

T [T 2, .
—24— cos” ¢ sin ¢ do
2 /2
I
—127 |—=cos® ¢
3 /2
47 (cos3 7 — cos® g)
—A4m.

. The normal 77 points up, while F points down. So we expect



