
Recall that TQBF is the set of all true, fully quantified Boolean formulas. We have already demon-

strated that TQBF ∈ PSPACE. It remains to prove that any language A ∈ PSPACE is polynomial-

time-reducible to TQBF . My proof here is identical to the proof in the Sipser textbook and to many

proofs all over the web. My version is just a bit more explicit, verbose, and (hopefully) clear.

1. Overview

Let M be a deterministic Turing machine that decides A in polynomial space. There exists some

constant k such that, for all n and all strings w of length n, M uses at most nk space to decide whether

w ∈ A. Let Q be the state set of M and Γ the tape alphabet of M . A configuration of M can be

represented as a string a0a1 · · · ank over Q ∪ Γ of length nk + 1. When M is given input w = w1 · · ·wn,

its starting configuration is

cstart = qstartw1 · · ·wn · · · .

Without loss of generality, we assume that M , before halting, empties its tape and parks its tape head

at the far left, so that its unique accepting configuration is

caccept = qaccept · · · .

Notice that T = |Q ∪ Γ|nk+1 is an upper bound on the number of configurations of M and hence on the

time that M requires to accept or reject w.

We need to establish a preliminary concept. For any symbol c, we can form a set

{ci,s : 0 ≤ i ≤ nk, s ∈ Q ∪ Γ}

of |Q∪Γ| · (nk + 1) variables. Any given configuration of M corresponds to a unique assignment of truth

values to these variables: Namely, ci,s is true in the assignment if and only if cell i of the configuration

contains symbol s. (On the other hand, there are some assignments of truth values that do not correspond

to any configuration of M — for example, an assignment in which c3,a and c3,b are both true, or an

assignment in which c4,q and c6,q are both true, for q ∈ Q.)

We now describe the polynomial-time algorithm F such that w ∈ A ⇔ F (w) ∈ TQBF . This F , on

input w:

(1) Selects two symbols c and d.

(2) Calls a subroutine D on 〈c, d, T 〉 to obtain a Boolean formula φc,d,T .

(3) Plugs truth values for the c-variables into φc,d,T , based on the starting configuration cstart for w.

(4) Plugs in truth values for the d-variables based on cacc.

(5) Outputs the resulting fully quantified Boolean formula.

The crux of the algorithm is the subroutine D. On any input 〈c, d, t〉, where c and d are symbols and

t is a non-negative integer, D outputs a Boolean formula φc,d,t which is free on the c- and d-variables

but fully quantified on any other variables it may contain. Further, if truth values are assigned to the

c-variables based on one configuration of M and truth values are assigned to the d-variables based on

another configuration of M , then the resulting fully quantified Boolean formula is true if and only if M

can go from the first configuration to the second in t or fewer steps. It follows that F is a reduction of A

to TQBF . The fact that F ’s output is of size polynomial in n is proven below. The fact that F ’s time

is also polynomial is asserted without serious proof, as is common in this subject.
1

TQBF is PSPACE-complete CS 254, Carleton College

The remainder of this tutorial gives the details of how D works. It is a recursive algorithm vaguely of

the divide-and-conquer genre. There is base cases for t = 0 and t = 1. Then we try a simple handling of

the recursive case, which unfortunately isn’t efficient enough. Then we improve the efficiency.

2. Base case: t = 0

Given two symbols c and d, we have two variable sets {ci,s} and {di,s}, and we can write the Boolean

formula

φc,d,0 =

nk∧
i=0

∧
s∈Q∪Γ

(ci,s ∧ di,s) ∨ (ci,s ∧ di,s).

Because the formula is unquantified, its truth or falsity depends on an assignment of truth values to its

variables; under some assignments it is true, and under other assignments it is false. What we can say

is this: If we assign truth values to the c-variables based on a certain configuration of M , and we assign

truth values to the d-variables based on another configuration of M , then the formula is true if and only

if the two configurations are identical — that is, iff M can go from the first configuration to the second

in zero steps.

3. Base case: t = 1

We now wish to write a formula that is true iff M can go from one configuration to another in one step.

This formula must incorporate information about M ’s transition function δ : Q× Γ → Q× Γ× {L,R}.
Namely, if δ(q, a) = (r, b,L), then consider the formula

φ
j,(q,a,r,b,L)
c,d,1 = cj,q ∧ cj+1,a ∧ dj−1,r ∧ dj+1,b ∧

(∨
e∈Γ

cj−1,e ∧ dj,e

)

∧

 ∧
i∈{0,...,j−2,j+2,...,nk}

∧
s∈Q∪Γ

(ci,s ∧ di,s) ∨ (ci,s ∧ di,s)

 .

If we assign truth values to the c- and d-variables based on two configurations of M , then φ
j,(q,a,r,b,L)
c,d,1

is true if and only if the first configuration has its state marker in cell j and M moves from the first

configuration to the second using the transition δ(q, a) = (r, b,L). The first line of the formula expresses

the change of state, the movement of the tape head, and the modification of the tape around the tape

head; the second line of the formula expresses the fact that the rest of the tape remains unchanged. One

can invent a similar formula to express transitions of the form δ(q, a) = (r, b,R). Then let

φc,d,1 = φc,d,0 ∨
∨
j

∨
(q,a,r,b,D)∈δ

φ
j,(q,a,r,b,D)
c,d,1 .

The variables in φc,d,1 are all free (unquantified). If we assign truth values to the c- and d-variables based

on two configurations of M , then φc,d,1 is true if and only if M can transition from the first configuration

to the second in one or fewer steps.

4. Inductive case: First try

Now suppose that t > 1. Consider the formula

φc,d,t = ∃m
(
φc,m,t/2 ∧ φm,d,t/2

)
,

2

TQBF is PSPACE-complete CS 254, Carleton College

where m is a symbol distinct from c and d, and “∃m” is shorthand for the concatenation of the |Q ∪ Γ| ·
(nk + 1) quantifiers ∃mi,s, for i = 0, . . . , nk and s ∈ Q ∪ Γ. This formula is free on the c- and d-variables

but quantified on all of its other variables. If we assign truth values to the c-variables based on one

configuration of M , and truth values to the d-variables based on another configuration of M , then we

obtain a fully quantified Boolean formula that is true if and only if M can go from the first configuration

to the second in t or fewer steps.

The problem with this reduction is that the resulting formula F (w) is too large. On each step of

the recursion, we halve t, but we double the number of φ-formulas involved. In the end, the number

of subformulas of the form φc,d,1 will be proportional to T and hence exponential in n. So the space

required will be exponential in n, and the time required must be (at least) exponential in n. We wanted

a polynomial-time reduction.

5. Inductive case: Second try

To improve our answer, we will take one step back and then two steps forward. Let c′ and d′ be new

symbols. First we rewrite the φc,d,t above as

∃m∀c′∀d′
(
((c′ = c ∧ d′ = m)→ φc′,d′,t/2) ∧ ((c′ = m ∧ d′ = d)→ φc′,d′,t/2)

)
.

The notion of “=” being used here can be implemented using the t = 0 base case:

∃m∀c′∀d′
(
((φc′,c,0 ∧ φd′,m,0)→ φc′,d′,t/2) ∧ ((φc′,m,0 ∧ φd′,d,0)→ φc′,d′,t/2)

)
.

Thus far, our new approach is even worse than the old approach. It still has the double recursion, and it’s

adding on even more quantifiers and other verbiage. But notice that, after the quantifiers, the expression

has the form

(A→ C) ∧ (B → C) ≡ (¬A ∨ C) ∧ (¬B ∨ C)

≡ (¬A ∧ ¬B) ∨ C

≡ ¬(A ∨B) ∨ C

≡ (A ∨B)→ C.

So, in the end, we can write φc,d,t as

∃m ∀c′ ∀d′ ((φc′,c,0 ∧ φd′,m,0) ∨ (φc′,m,0 ∧ φd′,d,0))→ φc′,d′,t/2.

Keep in mind that each quantifier here is actually shorthand for |Q∪Γ|·(nk+1) quantifiers. By increasing

the number of quantifiers, but not too badly, we have reduced double recursion to single recursion. That’s

quite clever.

How long is this formula? Well, before the → symbol, there are three sets of O(nk) quantifiers each,

and there are four formulas of the form φc,d,0, each of which is O(nk). So each level of recursion adds

O(nk) symbols to the formula. There are

log2 T = log2 |Q ∪ Γ|n
k+1 = (nk + 1) log2 |Q ∪ Γ| ∈ O(nk)

levels of recursion. So the total length of the formula is O(n2k). In addition, computing this polynomial-

length formula requires only polynomial time, because at each level of recursion the algorithm simply
3

TQBF is PSPACE-complete CS 254, Carleton College

selects three new symbols m, c′, d′, writes some quantifiers and φc,d,0-terms based on those symbols, and

divides t by two. This completes the proof.

6. Some details

The divisions by two are a bit messy, unless T is a power of two. So make T be the smallest power of

two that is at least |Q ∪ Γ|nk+1. This tactic comes up in many divide-and-conquer algorithms.

Writing a symbol with subscripts requires more than one tape cell. The number of symbols needed is

O(n2k), so the size of each symbol is O(n2k) and hence polynomial in n. Also, the size of each subscript

is logarithmic in nk. So this detail can’t ruin the fact that the space and time are polynomial in n.

4

