
Proof of NFA ↔ DFA CS 254, Carleton College

In class we’ve described the power set construction for implementing any NFA (without ε-

transitions) as a DFA. We did not prove that the construction works as advertised. Our textbook

says, “The construction of M obviously works correctly.”

For students who want more rigor, I now offer a proof. In my opinion, the proof is relatively

scant on educational value, for its length (even though I omit two sub-proofs). Understanding

the steps of the proof is about as difficult as understanding the construction in the first place.

For these reasons, I often don’t present detailed proofs about the simple constructions early

in this course. Later in the course we will do more intense constructions (some taking multiple

days of class) that will be argued in more detail.

Anyway, here’s the proof.

Let N = (QN ,Σ, q0N , FN , δN ) be an NFA without ε-transitions. Define a DFA M =

(QM ,Σ, q0M , FM , δM ) by

QM = ℘(QN ),

q0M = {q0N},

FM = {R ⊆ QN : R ∩ FN 6= ∅},

δM (R, a) =
⋃
r∈R

δN (r, a).

Let y1 · · · ym ∈ Σ∗ be an input string. I will argue that the following statements are logically

equivalent:

1. The DFA M accepts y1 · · · ym.

2. There exist q0, q1, . . . , qm ∈ QM such that q0 = q0M , qm ∈ FM , and qi+1 = δM (qi, yi+1) for

i = 0, . . . ,m− 1.

3. There exist q0, q1, . . . , qm ⊆ QN such that q0 = {q0N}, qm ∩ FN 6= ∅, and

qi+1 =
⋃
r∈qi

δN (r, yi+1).

4. There exist s0, s1, . . . , sm ∈ QN such that s0 = q0N , sm ∈ FN , and si+1 ∈ δN (si, yi+1).

5. The NFA N accepts y1 · · · ym.

Conditions 1 and 2 are equivalent, because Condition 2 is simply the formal statement of what it

means for a DFA to accept a string y1 · · · ym. Conditions 2 and 3 are equivalent by the definition

of the DFA M . Conditions 4 and 5 are equivalent by the definition of acceptance of a string by

an NFA. It remains to show that Conditions 3 and 4 are equivalent; then we can conclude that

M and N accept exactly the same strings.
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Suppose that Condition 3 is satisfied. Choose sm ∈ qm ∩ FN arbitrarily; such a choice is

possible because qm ∩ FN is non-empty. Then

sm ∈ qm =
⋃

r∈qm−1

δN (r, ym).

By the definition of union, there is at least one r ∈ qm−1 such that sm ∈ δN (r, ym). Let sm−1

be that r. Then

sm−1 ∈ qm−1 =
⋃

r∈qm−2

δN (r, ym−1).

By the same reasoning, we obtain an sm−2 ∈ qm−2 such that sm−1 ∈ δN (sm−2, ym−1). Repeating

this argument, we obtain sm, sm−1, sm−2, sm−3, . . . , s0 = q0N that satisfy Condition 4. [By

“repeating this argument” I mean that a proof by induction could be performed. Fill in that

gap if you like.]

Conversely, suppose that Condition 4 is satisfied. Define q0 = {q0N}, and then

qi+1 =
⋃
r∈qi

δN (r, yi+1)

for i = 0, . . . ,m− 1. Then si ∈ qi for i = 0, . . . ,m. [These statements requires another proof by

induction.] Thus qm ∩ FN contains sm and is non-empty. All of Condition 3 is satisfied.
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