
Exam C Solutions CS 254, Spring 2014

A. If N uses space s(n), then there is an equivalent deterministic Turing machine M that uses

space O(s(n)2), by Savitch’s theorem. Then M must use time 2O(s(n)
2), by one of the time-space

relationships proven in class.

B. A suitable string is the nested sum (p1[+1)]p, where the [] are metacharacters expressing a

grouping, not literal characters to appear in the string. For example, if p = 5 then the string is

(((((1 + 1) + 1) + 1) + 1) + 1). This is a valid Python expression; it evaluates to p + 1.

C. We define a Turing machine D that, on input x, outputs 〈K(x)〉 as follows. This D loops

over all bit strings y, in lexicographic order. For each y:

1. Check that y is of the form 〈M,w〉, where M is a Turing machine and w is an input for

M . If not, then abort this y and proceed to the next y.

2. Run H on y = 〈M,w〉. If H rejects, then abort this y and proceed to the next y.

3. Run M on w.

4. If the output of M is x, then set the tape to 〈|y|〉 and accept. Otherwise, proceed to the

next y.

First, notice that each step within D’s loop halts. Second, when D is dealing with a particular

y, D will output 〈|y|〉 if and only if y is a description of x. Third, recall that there is a constant

c such that K(x) ≤ |x|+ c for all x. Therefore, D will find a description of x among the strings

y of length at most |x|+ c. Finally, because the y are tried in lexicographic order, the 〈|y|〉 that

D outputs must be the length of the minimal description of x, and thus 〈K(x)〉.

D1. Briefly, finite ⊆ reg ⊆ context-free ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ decid ⊆ recog.

D2. ACCTM is recognizable but not decidable. So is HALTTM. So is EMPTYTM.

D3. Any of the NP-complete problems is suitable: SAT, 3SAT, 6=SAT, CLIQUE, MAX-CUT.

E. The answer is P. To prove so, I need to prove two statements: that P is big enough, and that

no smaller class is big enough.

First, I argue that if A ≤p B and B is context-free, then A ∈ P. Let F be a O(nk)-time

reduction from A to B. All context-free languages are in P, as we’ve proven in class. So there

exists a O(n`)-time decider M for B. Then an algorithm for deciding A is: Given w, compute

F (w). Then run M on F (w), and output whatever M outputs. This algorithm runs in time

O(nk +O(|F (w)|`) = O(nk) +O((nk)`) = O(nk`). Thus A ∈ P.

Second, I argue that if A is any language in P, then there exists a context-free B such that

A ≤p B. Let A ∈ P, and let B = {1}. Let M be a polynomial-time decider for A. Define a

reduction F from A to B as follows. On input w, F runs M on w. If M accepts, then F outputs

1

Exam C Solutions CS 254, Spring 2014

1. If M rejects, then F outputs 0. This construction shows that A ≤p B. Finally, B is finite,

and hence regular, and hence context-free.

F. [Although justification is not required, I give it anyway, for educational value.]

F1. TRUE. [Time complexity is defined only for Turing machines that halt on all inputs. If a

Turing machine didn’t halt on an input of length n, then its time complexity would be infinite.]

F2. TRUE. [We proved in class that implementing a multi-tape Turing machine on a one-tape

Turing machine causes at most a quadratic blowup in running time. So, if M runs in time

O(nk), then there is a one-tape version that runs in time O(n2k), which is still polynomial.]

F3. FALSE. [We can conclude that B is NP-hard. But we do not know that B is in NP.]

F4. FALSE. [Our proofs of Savitch’s theorem and the fact that TQBF is PSPACE-complete

used divide-and-conquer, but our Cook-Levin proof did not.]

F5. FALSE. [Every non-empty A in P is PSPACE-complete. But A = ∅ and A = Σ∗ are not.]

F6. TRUE. [We mentioned this in class. If there are recognizers for A and Ā, then we can run

them in parallel to build a decider for A. Once we have a decider for A, we can “negate” it to

get a decider for Ā.]

G1. TQBF is the set of all fully quantified Boolean formulas that are true. A nontrivial example

is

∀x ∃y ((∃z y ∧ z) ∧ (x ∨ y)).

A Boolean formula is a formula consisting of variables operated on by and (∧), or (∨), and not

(), and quantified by existential (∃) and universal (∀) quantifiers. The variables can take on

the values TRUE and FALSE. The formula is fully quantified if every variable appears inside a

quantifier. A fully quantified Boolean formula is either true or false; its truth does not depend

on a truth value assignment. The formula above is true because, no matter whether x is TRUE

or FALSE, a value of TRUE for y and TRUE for z makes y ∧ z and x ∨ y both true.

G2. TQBF is important to computer science because it is PSPACE-complete. PSPACE is

the set of computational problems that can be solved using a “reasonable” amount of memory.

TQBF is one of these problems, which is not remarkable. What’s remarkable is that every

such problem can be reduced to TQBF in a “reasonable” amount of time. That is, if we had

a time-efficient solution to TQBF, then we would have a time-efficient solution to a huge class

of problems. This huge class contains, for example, the integer factoring and discrete logarithm

problems, on which all of modern cryptography relies.

2

