Exam C Solutions CS 254, Spring 2014

A. If N uses space s(n), then there is an equivalent deterministic Turing machine M that uses
space O(s(n)?), by Savitch’s theorem. Then M must use time 20(5(”)2), by one of the time-space

relationships proven in class.

B. A suitable string is the nested sum (P1[+1)]?, where the [] are metacharacters expressing a
grouping, not literal characters to appear in the string. For example, if p = 5 then the string is

((((L+1)+1)+1)+1)+1). This is a valid Python expression; it evaluates to p + 1.

C. We define a Turing machine D that, on input z, outputs (K (z)) as follows. This D loops

over all bit strings y, in lexicographic order. For each y:

1. Check that y is of the form (M, w), where M is a Turing machine and w is an input for

M. If not, then abort this y and proceed to the next y.
2. Run H on y = (M, w). If H rejects, then abort this y and proceed to the next y.
3. Run M on w.

4. If the output of M is z, then set the tape to (|y|) and accept. Otherwise, proceed to the

next y.

First, notice that each step within D’s loop halts. Second, when D is dealing with a particular
y, D will output (|y|) if and only if y is a description of z. Third, recall that there is a constant
¢ such that K(z) < |z|+ ¢ for all . Therefore, D will find a description of x among the strings
y of length at most |z| 4 ¢. Finally, because the y are tried in lexicographic order, the (|y|) that
D outputs must be the length of the minimal description of x, and thus (K (x)).

D1. Briefly, finite C reg C context-free C P C NP € PSPACE C EXPTIME C decid C recog.
D2. ACCryy is recognizable but not decidable. So is HALTty. So is EMPTY 1.
D3. Any of the NP-complete problems is suitable: SAT, 3SAT, #SAT, CLIQUE, MAX-CUT.

E. The answer is P. To prove so, I need to prove two statements: that P is big enough, and that
no smaller class is big enough.

First, I argue that if A <, B and B is context-free, then A € P. Let F be a O(n*)-time
reduction from A to B. All context-free languages are in P, as we’ve proven in class. So there
exists a O(nf)-time decider M for B. Then an algorithm for deciding A is: Given w, compute
F(w). Then run M on F(w), and output whatever M outputs. This algorithm runs in time
O(nF + O(|F(w)|") = O(n*) + O((nF)) = O(nk*). Thus A € P.

Second, I argue that if A is any language in P, then there exists a context-free B such that
A <, B. Let A € P, and let B = {1}. Let M be a polynomial-time decider for A. Define a
reduction F' from A to B as follows. On input w, F' runs M on w. If M accepts, then F outputs
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1. If M rejects, then F' outputs 0. This construction shows that A <, B. Finally, B is finite,

and hence regular, and hence context-free.

F. [Although justification is not required, I give it anyway, for educational value.]

F1. TRUE. [Time complexity is defined only for Turing machines that halt on all inputs. If a
Turing machine didn’t halt on an input of length n, then its time complexity would be infinite.]
F2. TRUE. [We proved in class that implementing a multi-tape Turing machine on a one-tape
Turing machine causes at most a quadratic blowup in running time. So, if M runs in time
O(nF), then there is a one-tape version that runs in time O(n?*), which is still polynomial.]
F3. FALSE. [We can conclude that B is NP-hard. But we do not know that B is in NP.]

F4. FALSE. [Our proofs of Savitch’s theorem and the fact that TQBF is PSPACE-complete
used divide-and-conquer, but our Cook-Levin proof did not.]

F5. FALSE. [Every non-empty A in P is PSPACE-complete. But A = () and A = ¥* are not.]
F6. TRUE. [We mentioned this in class. If there are recognizers for A and A, then we can run
them in parallel to build a decider for A. Once we have a decider for A, we can “negate” it to

get a decider for A.]

G1. TQBF is the set of all fully quantified Boolean formulas that are true. A nontrivial example
is
Ve 3y (3zyANz)A(zVy)).

A Boolean formula is a formula consisting of variables operated on by and (A), or (V), and not
(7), and quantified by existential (3) and universal (V) quantifiers. The variables can take on
the values TRUE and FALSE. The formula is fully quantified if every variable appears inside a
quantifier. A fully quantified Boolean formula is either true or false; its truth does not depend
on a truth value assignment. The formula above is true because, no matter whether z is TRUE
or FALSE, a value of TRUE for y and TRUE for z makes y A z and x V y both true.

G2. TQBF is important to computer science because it is PSPACE-complete. PSPACE is
the set of computational problems that can be solved using a “reasonable” amount of memory.
TQBF is one of these problems, which is not remarkable. What’s remarkable is that every
such problem can be reduced to TQBF in a “reasonable” amount of time. That is, if we had
a time-efficient solution to TQBF, then we would have a time-efficient solution to a huge class
of problems. This huge class contains, for example, the integer factoring and discrete logarithm

problems, on which all of modern cryptography relies.



