Day 04 Homework CS 254, Winter 2020

As soon as you see this paragraph, please e-mail Josh. In your e-mail, list all of the following
times at which you could possibly attend office hours. List them by number — for example,
“1, 4, 7,8, 11, 127 (I'm hoping to set office hours that work for my students, now that their

schedules have settled down a bit.)

Mon 9:50-11:00 (2A) 2. Mon 11:10-12:20 (3A) 3. Mon 3:10-4:20 (6A)

4. Tue 10:00-11:00 5. Tue 11:00-12:00 6. Tue 1:00-2:00
Wed 9:50-11:00 (2A) 8. Wed 11:10-12:20 (3A) 9. Wed 3:10-4:20 (6A)
10. Thu 9:30-10:30 11. Thu 1:00-2:00 12. Thu 3:00-4:00

Solve Problems A-C on paper.

A. Working over ¥ = {a,b,c,d}, draw an NFA that recognizes the same language as the
regular expression

(adUbU c)*(dda)* U ac.

B. Textbook regular expression syntax leaves out the complementation operation, even
though regular languages are closed under complementation. Devise an algorithm for imple-
menting complementation using the other regular expression operators. That is, your algorithm
should input a regular expression R, and it should output a new regular expression S, such that
L(S) = ¥* — L(R). (Probably your algorithm consists of algorithms that we’ve discussed in
class, tied together.) Illustrate your algorithm using the example of R = aUb over the alphabet
Y ={a,b,c}.

C. Hamming distance is an important concept in error-correcting codes. The Hamming
distance H(w,x) between two bit strings w and z is defined as follows. If |w| # |z|, then
H(w,z) = co. If |w| = |z|, then H(w,z) is the number of bits in which w and « differ. For
example, H(00010,10111) = 3. For any set A of bit strings, define Na(A) to be the set of bit

strings within Hamming distance 2 of A:
Ny(A) ={w : Jz € A such that H(w,z) < 2}.

Prove that if A C {0,1}* is regular, then so is Na(A). (Hint: If A = L(M), where M has states
@, then construct an NFA with states @ x {0,1,2}.)

Read the Python regular expression tutorial on our course web site. Then solve Problems
D-F in a single Python file. Name the file using your Carleton user name followed by “04.py”.
For example, my version of the file is jdavis04.py. Your code should include comments to

explain any obscure or tricky bits. It should also include demonstration code. Hand in the file

Day 04 Homework CS 254, Winter 2020

electronically, as follows. Send e-mail to Josh with subject line “Day 04” (without the quotation

marks). Do not type any text in the body of the message. Attach your Python file to the e-mail.

D. Come up with a Python regular expression that describes mis-capitalized words. For the
sake of this problem, a word is said to be mis-capitalized if it consists of two or more letters and
any letter after the first one is upper-case. You may assume that only alphabetical characters

appear in words. For example, when I feed your regular expression to
re.findall(yourRegExp, ’This is okay tHis IS nOT Okay.’)

I should get a result of [’tHis’, ’IS’, ’n0T’].

An e-mail address such as supersnake@carleton.edu consists of a local part, supersnake,
and a hostname, carleton.edu. The local part is a string made of one or more characters from
this set: upper- and lower-case English letters, the digits 0 through 9, the characters !, #, $, %,
& 2, x, + - /, =7 ", _ . {, |,} 7, and the period .. The hostname is a string made of one
or more characters from this set: lower-case English letters, the digits 0 through 9, the period
., and the hyphen -. Neither the local part nor the hostname can begin or end in a period. The
local part and the hostname are separated by a single @. (There are a few more rules to real

e-mail addresses, but this is good enough for our purposes.)
E. Design a Python regular expression that matches e-mail addresses as just specified.

F. I like to write my dates in the format yyyy/mm/dd, but sometimes I accidentally write
mm/dd/yyyy because that’s how I was raised. Write a Python function fixDates that takes a
string as input, uses a regular expression to fix all dates in the string to my liking, and outputs
the fixed string. You may assume that all years are four-digit — I'm Y2K-compliant — but
remember that months and days can be one- or two-digit. (Hint: You need to use substitutions

and multiple groups.)

