
2× 2 Matrices CS 311, Winter 2017

This tutorial teaches you about 2 × 2 matrices: multiplication, inversion, application to

vectors, and their geometric meaning.

1 What is a matrix?

A matrix is a rectangular grid of numbers. An n×m matrix is one with n rows and m columns.

For example, here is a particular 2× 3 matrix:

M =

[
1 −4.2 π

0 2 2.2

]
.

It is common to index the entries of an n×m matrix with subscripts 1 ≤ i ≤ n and 1 ≤ j ≤ m.

For example, the entry in row 5 and column 2 of a big matrix M is denoted M52. Here is a

general 2× 3 matrix in that notation:

M =

[
M11 M12 M13

M21 M22 M23

]
.

Here is a general 2× 1 matrix. When writing n× 1 and 1×m matrices, it is common to drop

the index that never varies.

V =

[
V11

V21

]
=

[
V1

V2

]
.

In this tutorial, we will work exclusively with 2 × 2 matrices and 2 × 1 matrices. They are

important to us because they form a convenient framework for 2-dimensional geometry: 2 × 1

matrices represent vectors and points, and 2 × 2 matrices represent linear transformations of

those vectors and points.

Frequently we will need to transcribe matrices into C, where rows and columns are indexed

from 0 rather than 1. So let’s switch to that indexing convention right now. Here are a general

2× 2 matrix M and 2× 1 matrix ~v:

M =

[
M00 M01

M10 M11

]
, ~v =

[
v0

v1

]
.

2 Transforming vectors

We now explain the way in which 2 × 2 matrices represent transformations of 2 × 1 matrices.

The key concept here is matrix multiplication. The product of a 2 × 2 matrix M and a 2 × 1

matrix ~v is another 2× 1 matrix M~v, defined as

M~v =

[
M00 M01

M10 M11

][
v0

v1

]
=

[
M00v0 +M01v1

M10v0 +M11v1

]
.
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Figure 1: The left side is a shape in the plane. The right side is the same shape, after each of

its points ~v has been rotated by the rotation matrix with θ = π/3 = 60◦.

Here are four important examples, to build your intuition.

First, for any angle θ, the matrix

M =

[
cos θ − sin θ

sin θ cos θ

]

represents counterclockwise rotation of the plane through θ. For example, if θ = π/3 = 60◦,

then, for every vector ~v,

M~v =

[
v0/2− v1

√
3/2

v0
√

3/2 + v1/2

]
is a vector of the same magnitude as ~v, but directed π/3 radians or 60◦ counterclockwise from

~v’s direction. See Fig. 1.

Second, for any number k > 0,

M =

[
1 k

0 1

]
represents a top-to-the-right shear. For example, if k = 3, then

M

[
0

1

]
=

[
1 3

0 1

][
0

1

]
=

[
3

1

]
.

See Fig. 2. Similarly, if k < 0, then the shear is top-to-the-left.

Third, for any numbers k and `,

M =

[
k 0

0 `

]
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Figure 2: The left side is a shape in the plane. The right side is the same shape, after each of

its points ~v has been sheared by the shear matrix with k = 3.

Figure 3: The left side is a shape in the plane. The right side is the same shape, after each of

its points ~v has been distorted by the distortion matrix with k = 3 and ` = 1/2.

represents a distortion that stretches the plane horizontally by a factor of k and vertically by a

factor of `. See Fig. 3. Actually, “stretch” is a good descriptor only if k, ` > 1. For example, if

k = 1/2, then M compresses the plane in the horizontal direction. If ` = −3, then M ’s vertical

effect is to flip and stretch.

Fourth,

M =

[
1 0

0 1

]
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is the 2 × 2 identity matrix, usually denoted I. For any vector ~v, I~v = ~v. Geometrically, I

represents the trivial transformation, that does nothing. Notice that I is a special case of all

three preceding examples: It is rotation by θ = 0 = 0◦, shear by k = 0, and distortion by

k = ` = 1.

3 Coordinates

Let’s take a moment to remember that vectors and points are not the same thing as 2 × 1

matrices. Similarly, linear transformations are not the same thing as 2 × 2 matrices. Vectors

and linear transformations have a Platonic existence, and we can write them as matrices only

after choosing a coordinate system.

If we stick to a single coordinate system, then we can largely ignore this distinction. However,

in this course we will sometimes use many coordinate systems at once. For example, when we

organize a scene using a scene graph, each node in the graph will have its own coordinate system.

We’ll deal with that when the time comes.

4 Composing transformations

To compose transformations is to do one after another. For example, suppose that we want to

shear the vector ~v and then rotate that sheared vector. Then we might compute[
cos θ − sin θ

sin θ cos θ

]([
1 k

0 1

]
~v

)
.

For each ~v, we have to do two matrix multiplications: the inner one and then the outer one.

When there are many vectors ~v to transform, we can double the speed of the computation as

follows.

Define the product of two 2× 2 matrices like this:

MN =

[
M00 M01

M10 M11

][
N00 N01

N10 N11

]
=

[
M00N00 +M01N10 M00N01 +M01N11

M10N00 +M11N10 M10N01 +M11N11

]
.

It may help to notice that the left column of MN is M times the left column of N , and the

right column of MN is M times the right column of N . It turns out that matrix multiplication

is associative. So we can rewrite the shear-then-rotate computation as([
cos θ − sin θ

sin θ cos θ

][
1 k

0 1

])
~v =

[
cos θ k cos θ − sin θ

sin θ cos θ + k sin θ

]
~v.

Now transforming each ~v requires only one matrix multiplication.
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You can string together three, four, or any number of transformations like this. The first

transformation is on the right, and the last transformation is on the left. The order is important

because matrix multiplication is not commutative. For example,[
1 k

0 1

][
cos θ − sin θ

sin θ cos θ

]
=

[
cos θ + k sin θ k cos θ − sin θ

sin θ cos θ

]
.

The identity matrix I plays the role of 1 in the world of matrices, in that IM = M = MI

for all matrices M . This makes geometric sense: If we compose a transformation M with a

transformation I that does nothing, then the overall effect is just M .

5 Determinant

The determinant of a 2× 2 matrix M is

detM = det

[
M00 M01

M10 M11

]
= M00M11 −M01M10.

The determinant captures a crucial geometric property of the transformation represented by M :

its area distortion. For example, a rotation matrix has determinant

det

[
cos θ − sin θ

sin θ cos θ

]
= cos2 θ + sin2 θ = 1.

If you draw a square in the plane and then rotate it, the rotated square has the same area as

the original square (Fig. 1). Similarly, the shear matrix has determinant 1, indicating that it

doesn’t change the area of a square even though it changes the shape (Fig. 2).

The distortion matrix, on the other hand, has determinant k` and changes the area of a

square by that factor (Fig. 3). If ` = 1/k then the determinant is 1 and there is no area change.

If k > 0 and ` < 0, then the determinant is negative, indicating that the plane has been flipped.

The same is true if k < 0 and ` > 0. If both k and ` are negative, then the determinant is

positive. Intuitively, the transformation flips the plane twice, so it’s really not flipped at all.

6 Inversion

In the real numbers, every non-zero number x has a multiplicative inverse x−1 = 1/x, meaning

that xx−1 = 1. In the 2× 2 matrices, every matrix M with non-zero determinant has a multi-

plicative inverse M−1 such that MM−1 = I = M−1M . Intuitively, M−1 is the transformation

that undoes M , because

M−1M~v = I~v = ~v

for all ~v. (If detM = 0, then M−1 does not exist.)
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If you’ve studied linear algebra, then you’ve probably learned a complicated algorithm for

inverting matrices. The standard algorithm is difficult to program and extremely difficult to

make numerically stable. To my knowledge it is never used in actual computers. Fortunately,

you don’t need any such algorithm for 2× 2 matrices, because here is an explicit expression for

the inverse:

M−1 =

[
M00 M01

M10 M11

]−1

=
1

detM

[
M11 −M01

−M10 M00

]
.

On the right side of that equation, multiplying the matrix by the number 1/ detM means

multiplying each entry of the matrix by that number.

On paper, you should check that the expression for M−1 satisfies MM−1 = I. You should

also compute the inverses of the rotation, shear, and distortion matrices above. Do the answers

make geometric sense? Depending on your math background, that last question might not be

easy. Talk to me about it.

7 Solving linear systems

Here’s a common math problem: Given numbers a, b, c, d, g, h, find numbers x, y such that

ax+ by = g,

cx+ dy = h.

These two equations can be rewritten as one equation of 2× 1 columns,[
ax+ by

cx+ dy

]
=

[
g

h

]
,

which can in turn be rewritten using matrix multiplication:[
a b

c d

][
x

y

]
=

[
g

h

]
.

Let M be that 2× 2 matrix. If M−1 exists, then the unique solution is[
x

y

]
= M−1M

[
x

y

]
= M−1

[
g

h

]
.

In this way, matrices and their inverses help us solve systems of linear equations. (If M−1 does

not exist, then there may be no solutions or, in rare cases, infinitely many. That probably won’t

come up in this course.)

6


