Exam A Solutions CS 358, Spring 2018, Carleton College
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B.A. « is a label or name for a quantum state or any complex vector. In this example, we are
defining a linear transformation according to its effect on the standard basis, so « is the name
of a standard basis vector |a) in C2. So a = 0 or a = 1. More generally, if |a) were a standard

basis vector in C2", then o would be an n-bit bit string.

1 0
B.B. |a) is one of the standard basis vectors of C2. So |a) = [ 0 ] or |a) = [ ) ]
B.C. The first f is a two-qbit quantum gate. That is, it is a unitary linear transformation of C*

or equivalently a 4 x 4 unitary matrix.

B.D. The second f is a classical one-bit function f: {0,1} — {0,1}. There are four possibilities
for what f is.

C.A. When |«) is measured, the state changes to |0) with probability % and to |1) with probability
%. Exactly the same answer holds for |3). They are both uniform superpositions of the classical

one-gbit states.

C.B. Here is a quantum algorithm that behaves differently on |«) than on |3): Multiply the
state by H and then measure. If the state is |«), then the measurement certainly produces |0).

If the state is |3), then the measurement certainly produces |1).

D.A. [I'll omit the drawing from these solutions. It should have, from left to right, two wires

crossing, then a CNOT gate, then two wires crossing.|

D.B. The matrices for SWAP and CNOT are, respectively,

1000 1000
0010 0100
0100/ 000 1
000 1 0010
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Therefore the matrix for SWAP - CNOT - SWAP is

0
0
0
1

S = O O

1 0
0 1
0 0
0 0

which we have seen as the upside-down CNOT.

E.A. TRUE. [The exponential map wraps the imaginary axis around the unit circle infinitely

many times.]
E.B. TRUE. [If U is unitary, then U~ = U* ]

E.C. TRUE. [If the two-gbit state |y) is classical, then three of its entries are 0, so it satisfies

the unentanglement condition xooXx11 = Xo01X10-]

E.D. FALSE. [Two of the classical one-bit gates are non-invertible and hence cannot be imple-

mented as one-gbit gates.]

E.E. FALSE. [The two-bit AND (or NAND, or OR, or NOR) gate cannot be implemented as a
two-gbit gate.]

E.F. TRUE. [Any two-gbit state is a linear combination of classical two-gbit states.]

E.G. FALSE. [Partial measurement makes one of the gbits classical, but not necessarily the

other.]
E.H. TRUE. [And one of the gbits is also classical.]

F.A. Deutsch’s problem is: Given a two-gbit gate that implements one of the four classical
one-bit functions f (in the usual |a) [8) — |a) [8 @ f(«)) way), determine whether the hidden

function f is constant or non-constant.

F.B. Deutsch’s algorithm is: Compute (H ® H) - f-(H ® H) - (X ® X)|0) |0). Then measure
the first gbit. If it is |0), then f is non-constant. If it is |1), then f is constant.



