Exam B Solutions Math 210, Spring 2018, Carleton College

A. For the ratio test, we compute
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As n — oo, this expression limits to 422. So the series converges where 422 < 1 and diverges
where 422 > 1. We must specifically check where 422 = 1, which is where z = j:%. At x = i%

we have the series £+ (2;2;, which converges by the alternating series test. [You fill in the

details.] So the interval of convergence is [—%, %]

B. For the root test, we compute

en—1\"
n+12
So the series should converge (absolutely) as long as |¢| < 1. So ¢ = % works, for example.
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C. It is easier to analyze
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(The fourth equality follows by L’Hopital’s rule.) Therefore a,, converges to e = 1.
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D. By the integral test, the series converges if and only if the integral f;o dx converges.

The integral is
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So the series diverges. [Bonus problem: For which values of ¢ does converge?]
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E.A. It’s an alternating series. The absolute value of the nth term is sin?(1/n)/n
strictly decreasing. The limit of the terms is 0, because the numerator is between 0 and 1 and
the denominator goes to infinity. So, by the alternating series test, the series converges. [Bonus:

The series converges absolutely.]

E.B. The error in truncating after the 10th term is no larger than the absolute value of the 11th
term, which is sin(1/11)/11%/2,



