
Exam B Solutions CS 254, Spring 2014

A1. The part of my Python regular expression responsible for matching string literals changes

from ’[^’]*’ to ’(?:\\’|[^’])*’. That is, the characters within a string literal are either (A)

\’ combinations or (B) non-’ characters.

A2. I remove the backslashes using a construction like

tokens = [re.sub(r"\\’", r"’", token) for token in tokens]

B. The basic idea is that, on any given step of computation, the current string stored in the

SARF machine encodes the complete configuration of the Turing machine. To be specific, let

M be any Turing machine with input alphabet Σ = {0, 1}. A configuration of M consists of

a state q, a tape head location h ∈ N, and the contents t of the tape. Although the tape is

infinite, its essential contents at any given time are finite. That is, the tape consists of finitely

many characters, followed by infinitely many blanks that do not need to be recorded in t.

The configuration (q, h, t) can be encoded into a bit string 〈q, h, t〉 according to any of various

encoding schemes. Here are a couple of details. Let’s agree that the encoding of 〈q, h, t〉 consists

of 〈q〉, followed by a separator, then 〈h〉, then a separator, then 〈t〉. The encoding of t begins

with a bit that signals whether the rest of the encoding is the raw contents of the tape, or some

non-trivial encoding of those contents. That is, if the essential tape consists entirely of 0s and

1s, so that it is a bit string u, then a valid encoding of t is the bit string 0u. If the essential tape

contains characters other than 0 and 1, then it must be encoded into a bit string u according to

some scheme, and 1u is a valid encoding of t.

Without loss of generality, we can assume that M , before it accepts or rejects, erases its

tape and parks its tape head at the left end of the tape. How? We can alter M to a new Turing

machine M ′ that simulates M , but with special markers wrapped around M ’s tape. Just before

M accepts or rejects, M ′ scans to the right marker, and then scans back to the left marker,

blanking the tape along the way. When the tape head reaches the left marker, M ′ blanks that

space, moves left, and accepts or rejects as M would. Therefore, for any M there exists an

equivalent M ′ that always accepts or rejects with a blank tape and leftward tape head. [We

pulled a similar trick when showing that the language of any PDA is context-free.]

So there are unique accepting and rejecting configurations. Also, for any input w, there is a

unique starting configuration for M on w. These configurations are encoded using A, R, and S

as follows.

1. The string A consists of 〈qacc〉, a separator, 〈0〉, a separator, and then 0.

2. The string R consists of 〈qrej〉, a separator, 〈0〉, a separator, and then 0.

3. Let S be the string consisting of 〈q0〉, a separator, 〈0〉, a separator, and then 0. Therefore

Sw encodes the starting configuration of M on input w.

1



Exam B Solutions CS 254, Spring 2014

Finally, the function F describes how one configuration changes to the next. For example, if

M contains a transition δ(q, a) = (r, b,R), then for all h ≥ 0 and all t that contain the symbol

a in the hth cell,

F (〈q〉, 〈h〉, 〈t〉) = 〈r〉, 〈h+ 1〉, 〈t′〉,

where t′ is t with a replaced by b in the hth cell.

[Here’s a subtle question: Does any SARF machine have an equivalent Turing machine?]

C. I will use Rice’s theorem, after proving three statements. First, SMALLTM is a property of

recognizable languages, because whether 〈M〉 belongs to SMALLTM depends only on L(M).

Second, it is easy to see that SMALLTM is non-empty: For any small Turing machine M , 〈M〉 ∈
SMALLTM . Third, to see that SMALLTM does not contain all Turing machine encodings 〈M〉,
consider these two facts:

• There are infinitely many recognizable languages. Indeed, there are infinitely many lan-

guages consisting of a single bit string each, and each of these languages is finite and hence

recognizable.

• There are finitely many small Turing machines (ignoring renamings of the states). For a

Turing machine with p states is specified by choices for q0, qacc, qrej, and δ(q, a) for each

combination of q ∈ Q and a ∈ Γ. Hence there are at most p3 · (6p)3p Turing machines with

p states, and at most this many small Turing machines:

99∑
p=2

p3 · (6p)3p ≈ 6.33 · 10829.

Because there are more recognizable languages than small Turing machines, there must exist

a recognizable language L(M) that is not the language of any small Turing machine N , and

SMALLTM does not contain 〈M〉 for this M . Thus SMALLTM is a nontrivial property of

recognizable languages, and SMALLTM is undecidable by Rice’s theorem.

2


