
Exam A Solutions CS 254, Fall 2013

A. Let A be the empty set and C the set of all strings over {0, 1}. These languages are matched

by the regular expressions ∅ and (0∪ 1)∗, and hence are regular. Let B = {0n1n : n ≥ 0}, which

is not regular, as we’ve discussed many times. Notice that A ⊆ B ⊆ C, as desired.

B. [Remark: In class we’ve shown that {ww : w ∈ {0, 1}∗} is not context-free. The solution

below is essentially identical: A PDA is incapable of testing whether two strings are equal. In

class we’ve shown also that {anbncn : n ≥ 0} is not context-free. You can mimic that argument,

using the string s = \sp\n\sp\n\sp\n, to prove that A is not context-free. In fact, that proof

is probably simpler than the one given below.]

Assume for the sake of contradiction that A is context-free. Let p be a pumping length for

A, and let

s = \tp\sp\n\tp\sp\n.

Because s ∈ A and |s| ≥ p, s can be pumped. That is, there exist strings u, v, x, y, z such that

s = uvxyz, |vxy| ≤ p, |vy| ≥ 1, and uvixyiz ∈ A for all i ≥ 0. There are several cases, based on

the location of vxy within s.

If vxy is a substring of the first line \tp\sp\n, then there are two subcases. If vxy contains

the \n, then pumping s to uv2xy2z adds a new line to the string, with indentation at most

\sp−1. This indentation does not match the indentation of the last line in the string. If vxy

does not contain the \n, then pumping v and y does not change the number of lines in the string,

but does change the indentation of the first line, so that it no longer matches the indentation of

the second line. In either subcase, the pumped string is not in A.

Similarly, if vxy is a substring of the second line \tp\sp\n, then there are two subcases. In

both subcases, s can be pumped to leave A.

The remaining case occurs when vxy is a substring of \sp\n\tp that contains at least one

\s and at least one \t. Again there are two subcases. If vy contains the \n, then pumping up

v and y adds a new line with incorrect indentation, so uv2xy2z 6∈ A. Otherwise, x contains the

\n. Pumping v and y changes the number of \ss in the first indentation or the number of \ts in

the second indentation (or both). In either of these subcases, the indentations no longer match,

so that the pumped string is not in A.

In each case, we have shown that s can be pumped to leave the language A. This fact

contradicts the pumping lemma. Hence A is not context-free.

C. [Remark: This problem is closely related to Problem 2.26 from our textbook.]

If G is an arbitrary context-free grammar, then P ’s stack may grow arbitrarily large in the

process of accepting a string w. For example, let G be the grammar

S → SS|ε|a

1



Exam A Solutions CS 254, Fall 2013

over the terminal alphabet {a}. Then the string w = a is in the language of G, but P may add

arbitrarily many Ss to its stack, before collapsing all but one of them to εs.

Now suppose that G is in Chomsky normal form. If w = ε, then P ’s stack never exceeds

height 2. Henceforth assume that w 6= ε. As G derives w from the start variable S, consider

how the string of variables and terminals evolves from S to w. Each rule of the form A→ BC

increases the number of variables in the string by one. Each rule of the form A→ a replaces a

variable with a terminal. Hence, the length of the string can never exceed the length of the final

product w. As P simulates G on input w, its stack stores exactly the same deriving string, with

an additional $ symbol to mark the bottom of the stack. Thus P will never have stack height

greater than |w|+ 1.

D. Define a DFA M by taking the product of the DFAs M1 and M2. Precisely, let QM =

QM1×QM2 , ΣM = ΣM1 = ΣM2 , q0M = (q0M1
, q0M2

), and δM (q1, q2, a) = (δM1(q1, a), δM2(q2, a)),

as always. Define

FM = (FM1 × (QM2 − FM2)) ∪ ((QM1 − FM1)× FM2).

That is, a state (q1, q2) in M is a final state if and only if q1 is a final state of M1 or q2 is a final

state of M2, but not both. Thus the language of M is the symmetric difference of the languages

of M1 and M2:

L(M) = (L(M1) ∪ L(M2))− (L(M1) ∩ L(M2)).

In other words, M accepts a string w if and only if M1 and M2 disagree on w.

Notice that p1p2 is the number of states in M and hence a pumping length for L(M). Suppose

that w ∈ L(M) has length |w| ≥ p1p2. By the pumping lemma, w can be pumped down to

a shorter string in L(M). If this shorter string also has length p1p2 or greater, then it can be

pumped down to a still shorter string in L(M). If we repeat this process, we eventually obtain

a string x ∈ L(M) such that |x| < p1p2. Thus, if M1 and M2 disagree on any string w such

that |w| ≥ p1p2, then they must disagree on some string x such that |x| < p1p2. Taking the

contrapositive of that statement, we conclude that if M1 and M2 agree on all strings x of length

less than p1p2, then they agree on all strings of length greater than or equal to p1p2, and hence

on all strings.
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