
Exam B Solutions CS 111, Fall 2016, Carleton College

A0.

>>> functools.reduce(lambda x, y: x * y, [1, 3, 5, 7, 9])

945

A1. [Here is an iterative solution and a recursive solution, next to each other.]

def reduce(f, l): def reduce(f, l):

if len(l) == 1: if len(l) == 1:

return l[0] return l[0]

else: else:

acc = f(l[0], l[1]) return reduce(f, [f(l[0], l[1])] + l[2:])

for i in range(2, len(l)):

acc = f(acc, l[i])

return acc

B0. My kernel is [[1, 2, 0], [2, 0, -2], [0, -2, -1]]. Neighboring pixels above-left

contribute positive amounts to the convolution. Neighboring pixels below-right contribute neg-

atively. So the convolution result is large if the former are greater than the latter.

B1. For an n × n image convolved by a k × k kernel, the running time of imageConvolved

is O(n2k2). For imageConvolved loops over (almost) all the rows and columns of the image,

touching O(n2) pixels. At each pixel, it constructs a weighted sum of k2 nearby pixels. So the

total time is proportional to n2k2.

[More precisely, the algorithm loops over n − (k − 1) rows and n − (k − 1) columns. But

typically n is much greater than k, so n − (k − 1) is roughly equal to n. More precisely still,

the running time is proportional to (n − (k − 1))2k2, but this is O(n2k2), because after all O
describes an upper bound on the running time.]

C0. [I’ll omit the graph itself. It should show n on the horizontal axis and running time on the

vertical axis. euc should plot as a straight line from the origin with positive slope. gcd should

plot as an exponential curve, starting out below the euc line, but soon shooting dramatically

above the euc line. I would label the n where they cross “N”.]

gcd’s running time is O(2n), while euc’s running time is O(n). At a particular value of n,

which we might call N , the two curves cross. euc is faster than gcd for all n > N , and it’s much

faster when n is much greater than N .

1



Exam B Solutions CS 111, Fall 2016, Carleton College

[Some students said that trial division was O(n2) rather than O(2n). There is a huge

difference. When n = 64, for example, n2 = 4,096 and 2n ≈ 1019. When n = 1,024, as is

common in RSA in 2016, n2 ≈ 106 and 2n ≈ 10308.]

C1. GCDs are important because they are a basic arithmetic computation. For example, we use

them in elementary school when reducing fractions to their lowest terms (such as 60/24 = 5/2).

For another example, the RSA cryptosystem is a popular algorithm for protecting sensitive

information such as financial transactions. And GCDs are needed for setting up RSA (in choosing

the keys e and d).

The Euclidean algorithm is extremely, dramatically faster than the trial division algorithm.

For example, when the numbers are 64 bits, euc uses roughly 64 operations while gcd uses

roughly 264 ≈ 16,000,000,000,000,000,000 operations. If the RSA setup used the trial divi-

sion algorithm, then setting up RSA would be approximately as difficult as breaking RSA —

rendering the whole algorithm pointless.

D.

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

E. When the command executes, it eventually forms a stack of recursive calls like this:

mergeSort([’1’, 4])

mergeSort([3, 0, ’1’, 4])

mergeSort([5, 2, 7, 6, 3, 0, ’1’, 4])

The top-most call recursively determines that [’1’] and [4] are sorted. Then it tries to merge

those two lists. The merging requires a comparison of the string ’1’ and the integer 4, which

causes an error. When Python reports this error, it shows the call stack, or at least which

functions are on the call stack. In this case, the call stack looks like three copies of mergeSort.

[See below for an actual transcript. Remarkably, a couple of students came close to this level

of detail in their answers.]

2



Exam B Solutions CS 111, Fall 2016, Carleton College

>>> mergeSort([5, 2, 7, 6, 3, 0, ’1’, 4])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 9, in mergeSort

File "<stdin>", line 9, in mergeSort

File "<stdin>", line 15, in mergeSort

TypeError: unorderable types: str() < int()

F0. Notice that Python’s response at the end is a float, not an int.

>>> velveeta = Employee(1990, 60000)

>>> velveeta.payMonth()

>>> velveeta.getPayThisYear()

5000.0

F1. [This question is a bit open-ended. At a minimum, two lines must be added to init

and two lines must be added to payMonth, and there must be some way to query the cumulative

retirement account. The getRetireMonthly method and many other methods would be nice,

but they’re not strictly necessary.]

def __init__(self, birthYear, salary, retireMonthly):

self.birthYear = birthYear

self.salary = salary

self.retireMonthly = retireMonthly

self.retirement = 0

self.startNewYear()

def payMonth(self):

self.payThisYear += self.salary / 12.0

self.payThisYear += self.retireMonthly

self.retirement += self.retireMonthly

def getRetirement(self):

return self.retirement

def getRetireMonthly(self):

return self.retireMonthly

3


