
Exam C CS 254, Spring 2013

A. We will reduce EMPTYTM to A. Suppose, for the sake of contradiction, that A is decided

by a Turing machine D. Define a Turing machine C that, on input 〈M〉, where M is a Turing

machine:

1. Builds a CFG G, over the same alphabet as M , for the empty language.

2. Runs D on 〈M,G〉 and outputs whatever D outputs.

If M is a Turing machine with L(M) = ∅, then D accepts 〈M,G〉, and hence C accepts 〈M〉. If

M is a Turing machine with L(M) 6= ∅, then D rejects 〈M,G〉, and hence C rejects 〈M〉. Thus

C is a decider for EMPTYTM, which is undecidable. This contradiction implies that A is also

undecidable.

B.

A. ∅.
B. {0n1m : n,m ≥ 0}.
C. {0n1n : n ≥ 0}.
D. {0n1n0n : n ≥ 0}. This is easily proved by the pumping lemma for context-free languages,

using the string 0p1p0p.

E. HALTTM.

F. HALTTM.

G. EQTM.

C. Define a Turing machine F that takes a Boolean formula φ as input, and outputs φ fully

quantified by existential quantifiers ∃. More precisely, on input 〈φ〉, where φ is a Boolean

formula, F does these steps:

1. Scans through φ to examine the variables used. For each variable x used, appends ∃x to

the tape.

2. Copies φ from the start of the tape to the end of the tape, and deletes φ from the start

of the tape. For example, if φ uses the variables x1, . . . , xm, then the contents of the tape

are now ∃x1 . . . ∃xmφ (or rather the encoding 〈∃x1 . . . ∃xmφ〉).

3. Accepts.

This F is deterministic, and its work can be accomplished in polynomial time, as it consists of

simple scans and copies. As we discussed in class, φ is satisfiable if and only if ∃x1 . . . ∃xmφ is

true. Therefore F is a deterministic polynomial-time reduction from SAT to TQBF. Because

any problem in NP can be reduced to SAT in deterministic polynomial time, it follows that any

problem in NP can be reduced to TQBF in deterministic polynomial time. That is, TQBF is

NP-hard.

1

Exam C CS 254, Spring 2013

[The problem was mis-worded to say “NP-complete” instead of “NP-hard”. I graded the

NP-hard part, and gave allowances to students who seemed to devote great effort to showing

that TQBF is in NP also.]

D. Let M be a linear bounded automaton, with state set Q and tape alphabet Γ. For any n ≥ 0,

let c(n) = |Q|(n + 2)|Γ|n. On an input of size n, M has at most c(n) possible configurations,

because there are |Q| possibilities for the state, n+2 possibilities for the location of the tape head,

and |Γ|n possible contents of the tape. If M uses c(n) time steps (or more) in its computation,

then it must use c(n) + 1 configurations, and hence it must reuse some configuration c0, by the

pigeonhole principle. Then, because M is deterministic, it must loop through c0 indefinitely. In

other words, if M does not loop indefinitely — if M accepts or rejects the given input of size n

— then it will do so in less than c(n) time.

E. [This is Problem 8.8 from our textbook. The proof uses ideas from Theorem 8.4 and one of

our assignments. The problem is harder than I intended. It would be easier if it were phrased in

terms of DFAs rather than regular expressions.] We define a nondeterministic Turing machine

N to decide Ā. On input 〈R,S〉, N does these steps:

1. Converts R and S to NFAs NR and NS , using our algorithm from class.

2. Computes m = 2|QR|+|QS |, where QR and QS are the state sets of NR and NS .

3. Marks the start states of NR and NS .

4. Nondeterministically guesses a sequence of m input symbols a1, . . . , am, but does not store

them. Rather, as it guesses each symbol, N updates the markings on the states of NR and

NS , so that they mark all states reachable by the string of input symbols guessed thus far.

5. Inspects the markings. If an accept state is marked in one NFA and no accept state is

marked in the other NFA, then N accepts. Otherwise, N rejects.

Now we define a deterministic Turing machine M that, on input 〈R,S〉, simulates N and outputs

the negation of what N outputs.

First, by Savitch’s theorem M requires only quadratically more space than N . So we argue

that N requires only polynomial space. Brief study of the algorithm for converting regular ex-

pressions to NFAs shows that the NFA occupies space linear in the size of the regular expression.

Storing m requires space logarithmic in m, and hence polynomial in |QR| and |QS |, and hence

polynomial in the size of the input. The markings require no space.

Now we argue that N decides Ā. The crux is the fact that, if NR and NS agree on all

strings up to length m, then they agree on all strings. This can be proved in a manner similar

to Problem 4.16 from our homework. Namely, convert NR and NS to DFAs, which have 2|QR|

2

Exam C CS 254, Spring 2013

and 2|QS | states, respectively. Using the product construction, form the symmetric difference

of the two DFAs (as in Theorem 4.5). The symmetric difference DFA has m states, and hence

a pumping length of m. If this DFA accepts a string of length greater than or equal to m,

then it must accept a string of length less than m, by the pumping lemma applied repeatedly.

Conversely, if this DFA rejects all strings of length less than m, then it rejects all strings. In

other words, if NR and NS agree on all strings of length less than m, then they agree on all

strings.

3

