
Exam C Solutions CS 254, Fall 2013

A. [Strangely, Problem 8.4 omits this operation.] Yes, PSPACE is closed under concatenation.

Let A,B ∈ PSPACE. Let M,N be deciders for A,B that use space O(nk),O(n`). Define a

Turing machine R that, on input w, tries splitting w into all possible concatenations w = xy.

For each split, R runs M on x and N on y. If in any split M and N both accept, then R accepts.

Otherwise, R rejects. Then R decides AB. It can use the same space to decide each split, and

the space required is no more than O(nk) +O(n`) = O(nmax(k,`)).

B. It is easy to see that A ∈ NP , because a verifier for A could take the stranger set as a

certificate and check that the stranger set is correct. To show that A is NP -hard, we reduce

3SAT to A, as suggested. Given a 3CNF Boolean formula φ, we build a graph G. This G has

one node per literal in φ. For each clause in φ, we connect all three corresponding nodes in G.

Further, we connect each node to any other node containing the opposite literal — for example,

we connect x nodes with x̄ nodes. The reduction outputs 〈G, k〉, where k is the number of

clauses in φ. The reduction requires only polynomial time. Now we check that it works.

Suppose that φ is satisfiable. In a satisfying assignment, at least one literal in each clause is

made true. Select one true literal from each clause. The corresponding set of k nodes in G is a

stranger set. Why? None of the intra-clause edges have two nodes in the stranger set, because

the stranger set contains just one node per clause. None of the inter-clause edges have two nodes

in the stranger set, because those two nodes would be marked with opposite literals (e.g., x and

x̄) that can’t both be true.

Conversely, suppose that G has a stranger set of size k. No two nodes within a single

clause can be in this stranger set. Therefore the stranger set contains exactly one node per

clause. Choose a truth assignment for φ that makes these literals true (and sets other literals

arbitrarily). How do we know that such an assignment can be chosen? The only problem that

could arise is that two true literals in different clauses contradict each other — for example, x

and x̄. But such nodes would share an edge in G, and hence could never belong to the same

stranger set.

C. [This problem is similar to the second half of Spring 2012, Exam B, Problem C.] Suppose,

for the sake of argument, that a Turing machine R recognizes A. We will use R to build a

recognizer P for HALTTM . Upon input 〈M,w〉, P performs these steps:

1. Build a Turing machine N that, on input x, runs M on w for |x|2 steps. If M accepts

or rejects during this time, then N enters into an infinite loop. If M does not accept or

reject during this time, then N accepts.

2. Run R on 〈N〉, and output whatever R outputs.

If 〈M,w〉 ∈ HALTTM , then M does not halt on w, so N accepts every input x. Specifically,
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N accepts x in time O(|x|2), so R accepts 〈N〉 and P accepts 〈M,w〉. Conversely, if 〈M,w〉 ∈
HALTTM , then let t be the time required by M to halt on input w. On all sufficiently long

inputs x — namely, those x such that |x|2 ≥ t — N fails to halt. Thus R does not accept 〈N〉
and P does not accept 〈M,w〉. Thus P is a recognizer for HALTTM , which is not recognizable.

This contradiction implies that A is not recognizable either.
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