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Abstract. This brief paper derives Euler’s equations for an inviscid fluid,

summarizes the Cauchy momentum equation, derives the Navier-Stokes equa-

tion from that, and then talks about finite difference method approaches to
solutions.

Typical texts for this material are apparently Acheson, Elementary Fluid Dy-
namics and Landau and Lifschitz, Fluid Mechanics.

1. Basic Definitions

We describe a fluid flow in three-dimensional space R3 as a vector field repre-
senting the velocity at all locations in the fluid. Concretely, then, a fluid flow is a
function

~v : R× R3 → R3

that assigns to each point (t, ~x) in spacetime a velocity ~v(t, ~x) in space. In the
special situation where ~v does not depend on t we say that the flow is steady.

A trajectory or particle path is a curve ~x : R→ R3 such that for all t ∈ R,

d

dt
~x(t) = ~v(t, ~x(t)).

Fix a t0 ∈ R; a streamline at time t0 is a curve ~x : R→ R3 such that for all t ∈ R,

d

dt
~x(t) = ~v(t0, ~x(t)).

In the special case of steady flow the streamlines are constant across times t0 and
any trajectory is a streamline. In non-steady flows, particle paths need not be
streamlines.

Consider the 2-dimensional example ~v = [− sin t cos t]>. At t0 = 0 the velocities
all point up and the streamlines are vertical straight lines. At t0 = π/2 the velocities
all point left and the streamlines are horizontal straight lines. Any trajectory is of
the form ~x = [cos t + C1 sin t + C2]>; this traces out a radius-1 circle centered
at [C1 C2]>. Indeed, all radius-1 circles in the plane arise as trajectories. These
circles cross each other at many (in fact, all) points. If you find it counterintuitive
that distinct trajectories can pass through a single point, remember that they do
so at different times.

2. Acceleration

Let f : R × R3 → R be some scalar field (such as temperature). Then ∂f/∂t is
the rate of change of f at some fixed point in space. If we precompose f with a
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trajectory ~x, then the chain rule gives us the rate of change of f with respect to
time along that curve:

D

Dt
f :=

d

dt
f(t, x(t), y(t), z(t))

=
∂f

∂t
+
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+
∂f

∂z

dz

dt

=

(
∂

∂t
+
dx

dt

∂

∂x
+
dy

dt

∂

∂y
+
dz

dt

∂

∂z

)
f

=

(
∂

∂t
+ ~v · ∇

)
f.

Intuitively, if ~x describes the trajectory of a small sensor for the quantity f (such
as a thermometer), then Df/Dt gives the rate of change of the output of the sensor
with respect to time. The ∂f/∂t term arises because f varies with time. The ~v ·∇f
term arises because f is being measured at varying points in space.

If we apply this idea to each component function of ~v, then we obtain an accel-
eration (or force per unit mass) vector field

~a(t, x) :=
D~v

Dt
=
∂~v

∂t
+ (~v · ∇)~v.

That is, for any spacetime point (t, ~x), the vector ~a(t, ~x) is the acceleration of the
particle whose trajectory happens to pass through ~x at time t.

Let’s check that it agrees with our usual notion of acceleration. Suppose that a
curve ~x describes the trajectory of a particle. The acceleration should be d

dt
d
dt~x.

By the definition of trajectory,

d

dt

d

dt
~x =

d

dt
~v(t, ~x(t)).

The right-hand side is precisely D~v/Dt.
Returning to our 2-dimensional example ~v = [− sin t cos t]>, we have ~a =

[− cos t − sin t]>. Notice that ~v · ~a = 0. This is the well-known fact that in
constant-speed circular motion the centripetal acceleration is perpendicular to the
velocity. (In fact, the acceleration of any constant-speed trajectory is perpendicular
to its velocity.)

3. Ideal Fluids

An ideal fluid is one of constant density ρ, such that for any surface within the
fluid the only stresses on the surface are normal. That is, there exists a scalar field
p : R × R3 → R, called the pressure, such that for any surface element ∆S with
outward-pointing unit normal vector ~n, the force exerted by the fluid inside ∆S on
the fluid outside ∆S is p~n ∆S.

The constant density condition implies that the fluid is incompressible, meaning
∇ · ~v = 0, as follows. For any region of space R, the rate of flow of mass out of the
region is ∫∫

∂R

ρ~v · ~n dS =

∫∫∫
R

∇ · (ρ~v) dV

(by the divergence theorem). Because the density ρ is constant, there can be no
change in the mass of fluid in R; the triple integral is zero. Because this holds
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for all regions R, the integrand ∇ · (ρ~v) = ρ∇ · ~v must be zero, so the fluid is
incompressible.

[Warning: The texts assume divergence zero in addition to constant density,
instead of deriving the former from the latter. But I don’t see an error here.]

4. Euler’s Equation

In an ideal fluid with pressure p, the total force exerted on a small chunk E of
fluid by the fluid around it is the vector

∫∫
∂E
−p~n dS. Let ~e1, ~e2, ~e3 be the standard

basis vectors for R3. Then for i = 1, 2, 3,(∫∫
∂E

−p~n dS
)
· ~ei =

∫∫
∂E

−p~ei · ~n dS

=

∫∫∫
E

∇ · (−p~ei) dV

=

∫∫∫
E

−∇p · ~ei dV

=

(∫∫∫
E

−∇p dV
)
· ~ei.

Therefore the force exerted on the chunk by the surrounding fluid is∫∫
∂E

−p~n dS =

∫∫∫
E

−∇p dV.

Working infinitesimally, suppose that the chunk has volume ∆V . By the pre-
ceding equation, the total force on the chunk is −(∇p)∆V . Its mass is ρ∆V , and
its acceleration is D~v

Dt . By Newton’s second law of motion,

−(∇p)∆V = ρ∆V · D~v
Dt

.

Dividing through by ρ∆V and expanding D~v
Dt we obtain Euler’s equation

∂~v

∂t
+ (~v · ∇)~v = −1

ρ
∇p.

5. Cauchy momentum equation

In a more general fluid, there may be tangential stresses, which arise from the
friction of particles sliding past each other, in addition to normal stresses. The
Cauchy momentum equation is Euler’s equation with an extra term to incorporate
these new stresses:

D~v

Dt
= −1

ρ
∇p+∇ · T.

Here, T is a symmetric 3× 3 matrix

T =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 ,
and ∇ · T is the vector

∇ · T =

 ∇ · 〈T11, T12, T13〉∇ · 〈T21, T22, T23〉
∇ · 〈T31, T32, T33〉

 .
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We do not derive this equation in this paper.
The Cauchy momentum equation is a highly general relationship between strain

(particle movement, on the left side) and stress (force per area, on the right side).
It holds for a wide variety of materials, including various kinds of fluids and solids.
To specialize the theory to one particular kind of material, you introduce another
stress-strain relationship, called the constitutive equation or rheology.

As a trivial example, plugging T = 0 (where 0 is the 3× 3 matrix of zeros) into
the Cauchy momentum equation results in Euler’s equation. So ideal fluids are
materials defined by the constitutive equation T = 0.

6. Navier-Stokes equation

A Newtonian fluid is one that obeys the Cauchy momentum equation (of course),
the incompressibility equation ∇ · ~v = 0, and the constitutive equations

Tij =
µ

ρ

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
,

where µ is a constant called viscosity and ρ is the constant density. Roughly, this
constitutive equation says that stress is proportional to the gradient of velocity.
The proportionality constant µ/ρ measures how “thick” the fluid is. Typical values
for µ/ρ are 0.01 (water), 0.15 (air), 1.0 (olive oil), 18 (glycerine), and 1,200 (syrup).

The Navier-Stokes equation is Cauchy’s momentum equation with this constitu-
tive equation plugged in:

D~v

Dt
= −1

ρ
∇p+

µ

ρ
∆~v.

The theory behind the Navier-Stokes equation is notoriously difficult. When a
mathematician encounters a differential equation such as this, her first questions
are: “Do solutions exist? Are the solutions smooth? Is there a unique solution?”
For Navier-Stokes, the answers are not known. In 2000, the Clay Mathematics
Institute announced a $1 million prize for finding them.

7. Finite difference method

!!under construction...
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