
Assignment H CS 202, Winter 2013, Carleton College

A. We’ve shown in a previous assignment that n2 = O(2n). That’s a pretty mild example of a wider

phenomenon: Any polynomial function is asymptotically bounded by any exponential function. For

example, n1000000 = O(1.000001n)! Prove it. That is, prove that nk = O(bn) for any integer k ≥ 0 and

any real number b > 1.

B. Here’s the usual recursive algorithm for computing the Fibonacci numbers Fn, implemented in Python:

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n - 1) + fib(n - 2)

I’ve claimed in class (or I will soon) that fib(n - k) appears a total of Fk+1 times in the call tree for

fib(n). State this idea precisely, with the correct quantifiers and bounds on n and k, and prove it.

C. Using Problem B and a previous assignment, prove that the running time of fib(n) is Ω((3/2)n).

Matrices are covered in Section 2.4.2 of our DLN textbook, but here’s the short version. A matrix is

a rectangular grid of numbers. A matrix with p rows and q columns is said to be a p × q matrix. If M

is a p× q matrix, then for any i and j (satisyfing 1 ≤ i ≤ p and 1 ≤ j ≤ q), Mij denotes the number in

the ith row (counting from the top) and jth column (counting from the left) of M . There are three basic

operations on matrices:

• If M is a p × q matrix and c is a number, then there is a scalar product matrix cM , which is also

p× q, defined by multiplying each entry of M by c. In other words,

(cM)ij = cMij .

• If M and N are both p× q matrices, then there is a sum matrix M +N , which is also p× q, defined

by adding the corresponding entries of M and N . That is,

(M + N)ij = Mij + Nij .

• If M is a p× q matrix and N is a q× r matrix, then there is a product matrix MN , which is p× r,

defined by

(MN)ij =

q∑
k=1

MikNkj .

Here’s another way to think of it. The (i, j)th entry of MN is what you get by multiplying the ith

row of M by the jth column of N , entry by entry, and then summing up those products.

Matrices are flabbergastingly important in mathematics, statistics, physics, and a wide variety of com-

putational problems. So fast algorithms for computing with matrices are highly desirable.

1



Assignment H CS 202, Winter 2013, Carleton College

D. What is the asymptotic running time of multiplying two n × n matrices using the formula above?

(Your elementary operations are additions and multiplications of ordinary numbers.)

Here’s another way to think of multiplying two n×n matrices M and N . Assume that n is even. Cut

M and N each into four quarters, labeled M11,M12, . . ., like this:

M =

[
M11 M12

M21 M22

]
, N =

[
N11 N12

N21 N22

]
.

Each of these quarters M11,M12, . . . is an n/2 × n/2 matrix. (In case you’re confused, the superscripts

11, 12, etc. are not exponents. They’re just superscripts, that denote which quarter of M or N we’re

looking at. I’d use subscripts for this purpose, but we’re already using subscripts to denote the individual

entries of M and N . For example, M11 is the left-upper-most entry in M , but M11 is the left upper

quarter of M .) It turns out that

MN =

[
(MN)11 (MN)12

(MN)21 (MN)22

]
=

[
M11N11 + M12N21 M11N12 + M12N22

M21N11 + M22N21 M21N12 + M22N22

]
.

That is, you can compute MN by computing various sums of products of matrices half as big as M and

N . This suggests a recursive, divide-and-conquer algorithm for multiplying matrices.

E. For convenience, assume that n is a power of 2. Describe this divide-and-conquer algorithm explicitly.

Write a recurrence relation T (n) for its running time when given two n × n matrices. Use the master

theorem for divide-and-conquer algorithms to compute T (n).

Here’s where things get clever. Define seven new n/2× n/2 matrices A,B,C, . . . , G as follows.

A = (M11 + M22)(N11 + N22),

B = (M21 + M22)N11,

C = M11(N12 −N22),

D = M22(N21 −N11),

E = (M11 + M12)N22,

F = (M21 −M11)(N11 + N12),

G = (M12 −M22)(N21 + N22).

Then it turns out that

MN =

[
(MN)11 (MN)12

(MN)21 (MN)22

]
=

[
A + D − E + G C + E

B + D A−B + C + F

]
.

This suggests a slightly different recursive, divide-and-conquer algorithm for multiplying matrices.

F. For convenience, assume that n is a power of 2. Describe this divide-and-conquer algorithm explicitly.

Write a recurrence relation T (n) for its running time. Use the master theorem to compute T (n).

2


