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Abstract

Homogeneous steady models are frequently used in the structural geology community to describe rock deformation.
We review the literature on these models in a streamlined, coordinate-free framework based on matrix exponentials and
logarithms. These mathematical tools allow us to compute progressive and simultaneous deformations easily. As an
application, we develop transpression with triclinic symmetry in two ways. The tools let us integrate field data related
to position and velocity in computing best-fit models with many degrees of freedom. As an application, we reanalyze a
published study to demonstrate the extent to which kinematic vorticity is sensitive to modeling assumptions. The tools
also open the door to an increased role for the mathematics of Lie groups (spaces of deformations) in structural geology.
We suggest two topics for further study: numerical methods for non-steady deformations, and statistics of deformation
tensors.
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1. Introduction

Natural rock deformation is neither homogeneous nor
steady (e.g., Lister and Williams, 1983; Jiang and White,
1995). The rock experiencing deformation may be hetero-
geneous and anisotropic (e.g., Biot, 1961; Cobbold et al.,
1971; Weijermars, 1992; Goodwin and Tikoff, 2002). The
stress field may vary in space and time (e.g., Angelier et al.,
1985; Bergerat, 1987; Zoback, 1992; Bird, 2002). Thermal
and chemical conditions can change during deformation
(e.g., Etheridge et al., 1983; Pavlis, 1986; Dunlap et al.,
1997; Whitney et al., 2007).

Despite these complexities, many structural geologists
use homogeneous, steady, purely kinematic models to an-
alyze data from naturally deformed rocks. The primary
justification for this simplification is that a scale can often
be chosen on which the deformation is approximately ho-
mogeneous (e.g., Ramsay and Graham, 1970; Means, 1976;
Ramsay and Huber, 1983; Twiss and Moores, 2007; Fossen,
2010). Further, homogeneous steady models can be com-
bined to construct nonlinear models at other scales. For
example, homogeneous steady models developed at differ-
ent points in space may allow estimates of deformation
partitioning (e.g., Law et al., 1984; Tikoff and Teyssier,
1994; Horsman and Tikoff, 2005; Sullivan and Law, 2007;
Titus et al., 2011). Models developed at different points
in time may constrain the deformation path (e.g., Elliott,
1972; Evans and Dunne, 1991; Grasemann et al., 1999;
Mookerjee and Mitra, 2009; Weil et al., 2010). In con-
trast, dynamical models have the advantage of being based
in physical law, but they are complicated. The simplest
dynamical model of viscous fluid flow — the Navier-Stokes

equations — is not well understood in theory (Fefferman,
2006). Field data are always incomplete, and they are
often too scant to warrant a complicated model.

The earliest kinematic models in structural geology were
based on the two-dimensional simple shear zone of Ram-
say and Graham (1970). A major advantage of simple
shear is that there is no slip along the shear zone bound-
ary and therefore no strain compatibility issues across the
zone. However, over time workers have recognized that
simple shear is not rich enough to describe shear zones
with significant flattening (e.g., Coward, 1976), regions
with both vertical uplift and horizontal shearing (Sylvester
and Smith, 1976), or patterns of folding (Sanderson and
Marchini, 1984) in classic wrench tectonic terranes (Wilcox
et al., 1973; Harding, 1973).

To account for such complexities, kinematic models have
become three-dimensional and increasingly general. For
instance, models for transpression/transtension with mon-
oclinic symmetries have been developed (Sanderson and
Marchini, 1984; Fossen and Tikoff, 1993; Simpson and
De Paor, 1993) and applied to many field-based datsets
(e.g., Ring, 1998; Bailey and Eyster, 2003; Baird and
Hudleston, 2007; Titus et al., 2007; Vitale and Mazzoli,
2009). Transpressions with triclinic symmetry (Jones and
Holdsworth, 1998; Lin et al., 1998; Iacopini et al., 2007)
have been applied to a variety of tectonic problems (Czeck
and Hudleston, 2003; Tavarnelli et al., 2004; Clegg and
Holdsworth, 2005; Horsman et al., 2008; Sarkarinejad and
Azizi, 2008). Some of these models include an added com-
ponent of extrusion (Dias and Ribeiro, 1994; Xypolias and
Koukouvelas, 2001; Neves et al., 2005; Wang et al., 2005;
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Figure 1: Over time, workers have employed increasingly rich deformation models. Each model is labeled with its number of degrees of
freedom (not counting the three degrees of freedom implicit in choosing coordinates).

Sarkarinejad and Azizi, 2008; Fernández and Dı́az-Azpiroz,
2009). Tikoff and Fossen (1993) and Soto (1997) intro-
duced even more general models (see Appendix A), which
have been applied to natural rock deformation only rarely
(e.g., Yonkee, 2005).

Despite the different components of deformation in-
cluded in particular kinematic models, the method of their
construction is similar. One commonly begins with a ve-
locity field and solves for the resulting finite deformation.
This “forward” process is well understood in geology (e.g.,
Ramberg, 1975; Tikoff and Fossen, 1993; Lin et al., 1998).
Unfortunately, geologic field data are often related not to
the velocity field but to the finite deformation. To recover
the velocity field, or to integrate data relating to both
position and velocity, one must work “backward” from de-
formation to velocity.

Provost et al. (2004) introduced mathematical tools —
matrix exponentials and logarithms — that expedite the
“forward” and “backward” computations. While Provost
et al. (2004) presented all of the requisite mathematics,
they did not offer many explicit geological applications.

In this paper, we advance the previous work by apply-
ing the exponential/logarithm method to two major ex-
amples: a forward problem of constructing a new kine-
matic model of transpression (Section 3) and an inverse
problem of finding the best homogeneous steady model
for a given set of field data (Section 5). In service to the
latter application, we review various kinds of geological
data (e.g., paleomagnetic rotations, lineation directions),
related to both velocity and position, and describe how
they can be integrated into the computation of a best-fit
model with many degrees of freedom (Section 4). We dis-
cuss the advantages of this approach and its connection to
the mathematical theory of Lie groups (Section 6). This
theory may be useful in developing further computational
techniques for structural geology. We propose two ideas
for further exploration: numerical methods for non-steady
deformations, and statistics of deformation tensors. In an
extensive appendix, we summarize the mathematical defi-
nitions, theorems, and algorithms, and compute a number
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Figure  2.  Davis  and  Titus    

Figure 2: A velocity field determines a progressive deformation,
which in turn determines a finite deformation.

of explicit geological examples.

2. Mathematical framework

Any rock deformation (or general fluid flow) can be de-
scribed as a velocity vector field, which gives the velocity
of each point particle in the rock at each instant during the
deformation (Fig. 2). For reasons outlined in Section 1, in
structural geology the velocity field is often assumed to be
homogenous and steady — that is, to satisfy the differential
equation

~̇y = L~y, (1)

where ~y is position, the dot denotes differentiation with
respect to time t, and L is a constant real tensor called
the velocity gradient tensor.

In addition to the velocity field, two other concepts are
useful for describing rock deformation (Fig. 2). The pro-
gressive deformation describes the path of each particle
in the deforming rock over time. The finite deformation
describes the net effect of the deformation between its
starting and ending times. Computing these quantities
amounts to solving the differential equation. The form of
solution that we favor in this paper is

~y = (exp tL)~x, (2)
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Figure 3: The tensor L that describes the velocity field exponentiates
to the tensor F that describes finite deformation. The tensor F may
have multiple such logarithms, but there is a principal logarithm lnF
of special importance.

where ~x is any initial position and exp denotes the ma-
trix exponential function (see Appendix B and Passchier
(1988b)). We assume that the time scale is chosen so that
t runs from 0 to 1. The finite deformation is then ~y = F~x,
where

F = expL

is the finite deformation tensor or position gradient tensor
that relates initial positions ~x to final positions ~y.

Because F = expL, it is tempting to write L = lnF .
This statement requires care, because some matrices do
not have real logarithms, while others have infinitely many.
Fortunately, for the finite deformation tensors F that com-
monly arise in structural geology, a well-defined real prin-
cipal logarithm lnF exists (see Fig. 3 and Appendix C).

In the cases when the finite deformation tensor F has
more than one real logarithm, selecting L = lnF leads
to a “simplest” progressive deformation that explains F .
By “simplest” we mean the one with the least rigid rota-
tion. In analysis of deformed rock, this choice may or may
not be the true deformation, but it serves as a useful start-
ing point, especially when rotation cannot be characterized
from the field data. Fig. 4 shows an explicit example. Two
velocity gradient tensors, denoted L0 and L1, produce dif-
ferent homogeneous steady progressive deformations that
result in the same finite deformation F . That is, L0 and
L1 are both logarithms of F . Compared to L0, which is
the principal logarithm, L1 produces additional rotation
that is undetectable in the final state at t = 1.

In summary, as was noted by Provost et al. (2004), the
exponential function allows us to work “forward” from a
velocity gradient tensor L to its resulting finite deforma-
tion tensor F , while the logarithm lets us work “backward”
from F to L, in many cases uniquely.

3. Application: simultaneous deformation

Structural geologists often choose to break finite defor-
mations into simpler components. This process of decom-
position is useful because the components of a deformation

are typically easier to conceptualize than the full defor-
mation, and because field data may relate to only one of
the components. Decompositions have been used to ap-
proximate the time sequence of deformation (e.g., Evans
and Dunne, 1991; Mookerjee and Mitra, 2009), and to iso-
late specific details about strain (e.g., Bell, 1979; De Paor,
1986; Oertel and Reymer, 1992; Yonkee, 2005) or vorticity
(e.g., Means et al., 1980; Lister and Williams, 1983; Jiang,
1999).

Some decompositions are accomplished through matrix
multiplication (e.g., Ramsay and Huber, 1983; Means,
1994). Given two finite deformations F1 and F2, the ma-
trix product F = F2F1 represents a non-steady process in
which the rock is deformed first by F1 and later by F2. The
composite deformation is called a sequential superposition
of F1 and F2. The order of the factors is significant, as
F2F1 6= F1F2 typically. Sanderson and Marchini (1984),
for example, examined how a pure shear followed by a
simple shear could describe transpression and transten-
sion. Others have used a polar decomposition F = RC
to express a finite deformation as the result of a coaxial
deformation C followed by a rotation R (Malvern, 1969;
Elliott, 1970; De Paor, 1983).

Another way to build complicated deformations from
simpler ones is to apply the simpler deformations at the
same time. This approach is termed simultaneous superpo-
sition of deformation. Except in special cases, the simul-
taneous deformation arising from F1 and F2 is different
from the sequential deformations F1F2 and F2F1 (Tikoff
and Fossen, 1993), and more difficult to compute. There
are two main computational methods: split-stepping, and
what we call the ln-sum-exp technique.

Split-stepping, which was introduced to structural geol-
ogy by Ramberg (1975), conceptualizes simultaneous de-
formation as the interleaving of small increments, as fol-
lows. For any matrix F whose principal logarithm lnF is
defined, one can further define the principal nth root of F
by

n
√
F = exp

(
1

n
lnF

)
(see Appendix D). This n

√
F satisfies

(
n
√
F
)n

= F and

is termed an increment of the finite deformation F . Now
suppose that we wish to find the simultaneous superposi-
tion F of two finite deformations F1 and F2. The matrix
product

(
n
√
F1

n
√
F2

)n
expresses the interleaving of incre-

ments of F1 with increments of F2. As n goes to infinity,
the increments become finer and finer, and the interleaved
matrix product approaches a limit, which is defined to be
the simultaneous superposition of F1 and F2:

F = lim
n→∞

(
n
√
F 1

n
√
F 2

)n
. (3)

In contrast, the ln-sum-exp method works in terms of
the velocity gradient tensors L1 and L2 corresponding to
F1 and F2. In rock that is undergoing two simultaneous

3



Figure  4.  Davis  and  Titus    

Time
t  =  0 t  =  10.2 0.4 0.6 0.8

0

0

2
-
0

L
0
  = 0

-
0
0

0

0

2
-
0

L
1
  = 0

- -2
2

b

0

0

e2
e-

0
=  F0

e-

0
0

0

0

e2
e-

0
=  F0

e-

0
0

a

Figure 4: Two velocity gradient tensors L0 and L1 (from Eq. (C.1)), with λ = − lnµ1 = 1
2

lnµ3 for brevity and to impose volume preservation),
produce distinct homogeneous steady deformation paths that result in the same finite deformation.

deformations, the combined velocity field can be taken to
be the sum of the component velocity fields (Provost et al.,
2004; Pollard and Fletcher, 2005, p. 178). So the velocity
gradient tensor for the simultaneous deformation is L1 +
L2, the path of the simultaneous deformation is

~y = (exp t(L1 + L2)) ~x,

and the simultaneous finite deformation tensor is exp(L1+
L2). Provost et al. (2004) noted that Li can be computed
from Fi as the principal logarithm Li = lnFi. Therefore,
in terms of the two finite deformation tensors F1 and F2,
the simultaneous finite deformation tensor is

F = exp (lnF1 + lnF2) . (4)

Put simply, to compute the simultaneous deformation one
computes two logarithms, adds them, and exponentiates
— this is why we call the method “ln-sum-exp”.

The Trotter product formula (see Appendix B) implies
that Eqs. (3) and (4) yield the same simultaneous defor-
mation F . Although split-stepping is useful for visualizing
the process of simultaneous deformation, computing defor-
mation tensors by Eq. (3) requires complicated algebraic
argument (Ramberg, 1975), especially in three dimensions.
The ln-sum-exp method is algorithmic (see Appendix F
for computer code). It is therefore easier, faster, and less
error-prone than split-stepping.

To provide more explicit examples of the utility of the
ln-sum-exp method, we now demonstrate how to construct
simultaneous transpression with triclinic symmetry in two
ways.

3.1. Inclined transpression
Many natural shear zones have monoclinic symmetries,

with either strike- or dip-parallel lineations. These two
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2

Figure  5.  Davis  and  Titus    

Figure 5: Diagram illustrating an inclined transpression kinematic
model. The reference coordinate system ~x (which is different from

the global coordinate system ~X) is parallel to the shear plane. Com-
pare with the triclinic deformation of Lin et al. (1998) from Fig. 1.
Modified from Jones et al. (2004).
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directions are predicted by monoclinic transpression mod-
els; whether one direction or the other develops depends
on the angle of convergence across the shear zone and the
amount of accumulated deformation (Fossen and Tikoff,
1993; Passchier, 1998; Teyssier and Tikoff, 1999; Ghosh,
2001; Dewey, 2002). However, some natural shear zones
have oblique lineations (e.g., Hudleston et al., 1988; Good-
win and Williams, 1996; Lin et al., 1998; Czeck and Hudle-
ston, 2004; Horsman et al., 2008), which cannot be ex-
plained by monoclinic models. Such shear zones are more
realistically modeled by transpression with triclinic sym-
metry (Jones and Holdsworth, 1998; Lin et al., 1998; Jones
et al., 2004).

Here we focus on the simultaneous inclined transpression
of Jones and Holdsworth (1998) and Jones et al. (2004).
This model involves two simple shear components applied
to a zone that is also allowed to change its width through
a coaxial deformation (Fig. 5). Written as matrices in
coordinates ~x aligned with the shear plane, the three com-
ponents of deformation are 1 γxy 0

0 1 0
0 0 1

 ,
 1 0 0

0 1 0
0 γzy 1

 ,
 1 0 0

0 α−1z 0
0 0 αz

 ,
for some constants γxy, γzy, αz. In the first step of the
ln-sum-exp method, we compute the principal logarithms
of these matrices to be 0 γxy 0

0 0 0
0 0 0

 ,
 0 0 0

0 0 0
0 γzy 0

 ,
 0 0 0

0 − lnαz 0
0 0 lnαz

 .
In the second step, we find the velocity gradient tensor L of
the inclined transpression as the sum of these logarithms:

L =

 0 γxy 0
0 − lnαz 0
0 γzy lnαz

 . (5)

For the third step, we must compute the Jordan decompo-
sition (see Appendix A) of this combined velocity gradient
tensor in order to exponentiate. Assuming that αz 6= 1,
tL diagonalizes as

tL = P

 0 0 0
0 −t lnαz 0
0 0 t lnαz

P−1,
where

P =

 1 2γxy 0
0 −2 lnαz 0
0 γzy 1

 .

Therefore the progressive deformation tensor is

exp tL = P

 0 0 0
0 α−tz 0
0 0 αz

t

P−1

=

 1 γxy
1−α−t

z

lnαz
0

0 α−tz 0

0 γzy
αz

t−α−t
z

2 lnαz
αz

t


and the finite deformation tensor is

F = expL =

 1 γxy
1−α−1

z

lnαz
0

0 α−1z 0

0 γzy
αz−α−1

z

2 lnαz
αz

 . (6)

The inclined transpression deformation tensor of Jones
and Holdsworth (1998), which was misquoted in their later
publication (Jones et al., 2004), differs from our inclined
transpression tensor (6) in the F32 entry: 1 γxy

1−α−1
z

lnαz
0

0 α−1z 0

0 γzy
1−α−1

z

lnαz
αz

 . (7)

Their deformation tensor (7) is incorrect. To see so, notice
that the velocity gradient tensor (5) equals the velocity
gradient tensor (B.1) of the triclinic transpression of Lin
et al. (1998), up to these changes of notation:

αz = eε̇, γxy = γ̇ cosφ, γzy = γ̇ sinφ.

The finite deformations should be identical up to the same
changes of notation. From Eq. (B.2), the finite deforma-
tion of Lin et al. (1998) is 1 γ̇

ε̇ (1− e−ε̇) cosφ 0
0 e−ε̇ 0

0 γ̇
ε̇ sinh ε̇ sinφ eε̇

 .
This matches (6), not (7).

That inclined transpression should be identical to the
triclinic transpression of Lin et al. (1998) makes sense.
Both describe transpression in which the shortening di-
rection is arbitrarily oblique to the shear plane, using co-
ordinates aligned with the shear plane. Mathematically,
they differ only in the notation used to express the direc-
tion and amount of shortening. Geologically, the triclinic
transpression is intended to model vertical shear planes
while the inclined transpression is intended to model hori-
zontal shortening, but this distinction is subsumed by the
choice of coordinate system.

3.2. Triclinic transpression from first principles

As a second example of simultaneous deformation using
the ln-sum-exp method, we now develop a new model of
transpression, from first principles and in a way that illus-
trates the issues of boundary slip and volume preservation
in kinematic models.
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v

Figure 6: An example of the simultaneous combination of two component deformations. For the first component, on the left, two rigid blocks
move relative to one another with arbitrary velocity ~v; the rock between them deforms so that the boundary conditions are preserved. For the
second component, in the center, the material is extruded vertically, so as to cancel the volume loss of the first deformation. The final state,
solved using the ln-sum-exp method, illustrated at the right, is mathematically equivalent to triclinic and inclined transpression described in
the text.

We combine the two finite deformations illustrated in
Fig. 6. Material trapped between two rigid blocks is de-
forming ductilely as the blocks move with relative velocity
~v. In the F1 deformation, the deforming material is al-
lowed to shorten (or lengthen), and shear vertically and
horizontally, without any slip along the boundary planes.
In coordinates aligned with the boundary planes, the de-
formation tensor is

F1 =

 1 v1 0
0 1 + v2 0
0 v3 1

 .
Unfortunately, F1 has determinant 1+v2, so it does not

preserve volume, except in the special case of simple shear.
We can offset the volume loss (or gain) by simultaneously
superimposing a dilation F2 in the x3-direction. Let

F2 =

 1 0 0
0 1 0
0 0 1

1+v2


be the dilation. As in the previous example, we use the
ln-sum-exp method to construct our simultaneous defor-
mation from these two finite deformations F1 and F2. The
velocity gradient tensor of the simultaneous deformation
is

L = lnF1 + lnF2

=

 0 v1
v2

ln(1 + v2) 0

0 ln(1 + v2) 0
0 v3

v2
ln(1 + v2) − ln(1 + v2)

 , (8)

and the finite deformation tensor is

F = expL

=

 1 v1 0
0 1 + v2 0
0 v3

2
2+v2
1+v2

1
1+v2

 .

This tensor F is identical to F1 in the first two rows, but
not in the third. It describes a deformation in which mate-
rial slips along both boundary planes in the x3-direction.
Thus, although F preserves volume it does not satisfy the
boundary conditions.

It turns out that the transpression that we have just
constructed is identical to the triclinic transpressions of
Lin et al. (1998) and Jones and Holdsworth (1998). Again
it differs only in the notation used to express the direction
and amount of shortening. Specifically, the velocity gra-
dient tensors (5) and (8) are equal up to these changes of
notation:

αz = (1 + v2)−1,

γxy =
v1
v2

ln(1 + v2),

γzy =
v3
v2

ln(1 + v2).

Building the transpression tensor F from the intermediate
tensor F1 emphasizes the fact that volume is preserved in
transpression only by letting material slip vertically. Slip
along the boundary is a valid criticism of homogeneous
transpression models (Robin and Cruden, 1994). It is im-
possible to construct a homogeneous finite deformation,
other than simple shear, that satisfies no-slip boundary
conditions and preserves volume.

4. Deformation concepts and data

In this section we review a variety of deformation
concepts, which are summarized graphically in Fig. 7.
Loosely, the left side of the figure relates to velocity while
the right side relates to position. The two sides are con-
nected by the matrix exponential and logarithm.

For each concept, we describe the role it plays in homo-
geneous steady models and how it can be observed in field

6
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Figure 7: A summary of some of the relationships among the velocity gradient tensor L, the finite deformation tensor F , auxiliary mathematical
quantities, and geological data that relate to those quantities.

data. Instead of graphical methods or formulas designed
for specific kinematic models (e.g., monoclinic or triclinic
transpression), we offer general, coordinate-independent
mathematical facts that apply to all homogeneous steady
deformations. This review is not exhaustive, but rather
focuses on the concepts needed for Section 5. Most of this
material is well known in the geology community. On the
other hand, our equations for the ~a- and~b-axes do not exist
in the literature except for special cases (e.g., the La and
Lb axes of Passchier, 1990), and our two expressions for
kinematic vorticity are certainly uncommon and possibly
new.

4.1. Volume change

Volume change is measured by both F and L, as is il-
lustrated by the position of this concept in Fig. 7. The
finite deformation tensor F preserves volume if and only
if detF = 1. Because det(expL) = exp(trL), the defor-
mation preserves volume if and only if the velocity gra-
dient tensor has trace zero. One can also understand
this by noticing that the divergence of the velocity field
is div ~̇y = trL. In any fluid flow, divergence zero corre-
sponds to incompressibility (e.g., Munson et al., 2009, p.
271) and therefore to volume preservation.

Volume changes are often difficult to estimate for de-
formed rocks. Successful estimates have been derived
from geochemical methods such as isocon diagrams (Bhat-
tacharyya and Hudleston, 2001; Baird and Hudleston,
2007), the area change of strain markers across strain gra-
dients (Srivastava et al., 1995), and rocks with pronounced
cleavage (Wright and Platt, 1982; Markley and Wojtal,

1996; Goldstein et al., 1999). It is more common, how-
ever, to assume constant volume in a deforming system in
the absence of compelling evidence to the contrary.

4.2. Flow apophyses

In two-dimensional deformation, individual particles
may follow hyperbolic, radiant, closed-loop, or parallel
paths, depending on the geometry of flow (Ramberg,
1975; Passchier, 1997). For hyperbolic paths, the straight
asymptotes to the hyperbolic paths are known as the flow
apophyses. For simple shear, which is a degenerate case,
there is only one flow apophysis, which is parallel to the
particle paths. In three-dimensional deformation, parti-
cles may experience various combinations of the four path
types. For example, in the deformation of Fig. 4b, par-
ticles follow spiral paths that approach the direction of
elongation.

Mathematically, a flow apophysis is usually defined to
be an eigenspace of the velocity gradient tensor L (Bob-
yarchick, 1986; Passchier, 1987a). It could just as well be
defined as an eigenspace of the finite deformation tensor F
(Fig. 7), because F = expL and exponentiation preserves
eigenspaces. Passchier (1997) called the flow apophysis as-
sociated to the greatest eigenvalue of L (or F ) the fabric
attractor. Material lines through the origin, that are not
themselves flow apophyses, rotate toward this apophysis
as time t goes to infinity. Similarly, he referred to the flow
apophysis with the least eigenvalue as the fabric repeller,
because material lines rotate away from it.

Several kinds of field data shed light on the orienta-
tion of flow apophyses: patterns of forward- and backward-
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rotating clasts (Simpson and De Paor, 1993; Wallis, 1995;
Jessup et al., 2007), fabric orientations relative to shear
zone boundaries (Bailey and Eyster, 2003), the angle be-
tween S and C fabrics (Platt and Vissers, 1980; Platt,
1984), and the angle between mineral lattice-preferred ori-
entations (LPO) and field foliation/lineation (e.g., Lis-
ter and Hobbs, 1980; Platt and Behrmann, 1986; Nicolas,
1989; Vissers, 1989; Wallis, 1992). However, many meth-
ods that are used to find the orientation of flow apophy-
ses make the assumption that deformation is plane strain
(Bobyarchick, 1986; Simpson and De Paor, 1993).

4.3. Finite strain ellipsoid

A homogeneous deformation F deforms a hypothetical
unit sphere in the undeformed rock into an ellipsoid in the
deformed rock, called the finite strain ellipsoid. This ellip-
soid is often described using two related tensors (Fig. 7).
The Finger tensor or left Cauchy-Green tensor (Malvern,
1969, p. 158, 174) is defined as FF>. The semi-axes of
the ellipsoid, or finite strain axes, are the eigenvectors of
FF>. Their lengths are the square roots of the corre-
sponding eigenvalues of FF>. The inverse(

FF>
)−1

=
(
F−1

)> (
F−1

)
(9)

of the Finger tensor is the ellipsoid tensor E of Flinn
(1979) and the Cauchy tensor c of Malvern (1969, p. 158),
Means (1976, p. 198-199), and Pollard and Fletcher (2005,
p. 190). The finite strain ellipsoid is the set of all points ~y
such that ~y>E~y = 1.

Many types of field data can be used to calculate the
finite strain ellipsoid, such as strain markers that origi-
nally began as spheres (e.g., ooids, Cloos, 1947) or ellip-
soids (e.g., pebbles, Dunnet, 1969; Elliott, 1970; Matthews
et al., 1974; Lisle, 1977; Siddans, 1980a,b). Workers have
also used angular changes in fossils (Nissen, 1964; Ramsay,
1967; Tan, 1973; Srivastava and Shah, 2006) and the dis-
tribution of linear makers such as veins (Sanderson, 1977;
De Paor, 1981; Panozzo, 1984; Passchier, 1990; Mulchrone,
2002), to provide just a few examples.

A finite deformation F determines a unique finite
strain ellipsoid FF>, but a given ellipsoid FF> does not
uniquely determine F (Flinn, 1979; Provost et al., 2004).
If F = QDR is the singular value decomposition of F (see
Appendix A), then

FF> = QD2Q−1.

Given a finite strain ellipsoid FF>, one can diagonalize
FF> to obtain Q and D2, then compute D by taking the
nonnegative square roots of the diagonal elements of D2,
and therefore determine Q and D in F = QDR. However,
the orthogonal tensor R is unknowable. In other words, if
a finite deformation F produces the Finger tensor FF>,
then for any orthogonal R the finite deformation FR pro-
duces the same Finger tensor, because

(FR)(FR)> = FRR>F> = FF>.

To solve for the full deformation tensor F , one must
use information beyond the finite strain ellipsoid. For ex-
ample, Zhang and Hynes (1995) use the orientation of a
shear plane and the direction of shear to solve for F . In
Section 5.1 we solve for F using the vorticity-normal sec-
tion and the amount of rotation of two material lines.

4.4. Velocity gradient tensor

Until recently, geologists had few opportunities to collect
data directly related to velocities and the velocity gradient
tensor L. However, with the introduction of GPS, it is now
possible to calculate L from modern velocity fields (e.g.,
Lamb, 1994a,b; Allmendinger et al., 2007, 2009). One can
also recover L by combining the various other velocity-
related data described throughout this section.

Two component tensors derived from L are particu-
larly useful (Ramsay, 1967; Malvern, 1969; McKenzie,
1979). The stretching tensor or rate-of-deformation ten-
sor S = 1

2

(
L+ L>

)
is symmetric, and its corresponding

finite deformation expS is coaxial. The vorticity tensor
W = 1

2

(
L− L>

)
is antisymmetric, and expW is a pure

rotation. The equation L = S + W therefore expresses
the finite deformation F = expL as the simultaneous su-
perposition of a coaxial deformation expS and a rotation
expW .

In some instances, the stretching and vorticity tensors
themselves are used for geologic applications. For exam-
ple, these tensors are calculated from GPS velocity fields
by Allmendinger et al. (2007) to predict regions of distor-
tion and rotation in a variety of tectonic environments for
comparison with long-lived geologic features. More com-
monly geologic field data determine secondary mathemat-
ical quantities related to S and W , which we discuss in the
remainder of this section.

4.5. Instantaneous stretching axes

In two dimensions, the instantaneous stretching axes
(ISAs) are the directions of maximum and minimum lon-
gitudinal strain rate — that is, the material lines that are
elongating and shortening most rapidly (Ramsay, 1967;
Means et al., 1980; Lister and Williams, 1983). Mathemat-
ically, they are the eigenvectors of the stretching tensor S.
In three dimensions, a third eigenvector of S and hence
a third ISA occurs, with some intermediate longitudinal
strain rate. The ISAs are always perpendicular to each
other.

It is worth emphasizing that the ISAs are constant
in any homogeneous steady deformation as defined by
Eq. (1). Therefore spin, which is the rotation of the ISAs
as deformation progresses (Lister and Williams, 1983),
cannot occur. For an example of spin in non-steady mod-
els, see Jiang (1994).

Structures that record only a small amount of defor-
mation, such as en echelon veins, stylolites, dikes, bore-
hole breakouts, and faults, are often interpreted to reflect
paleostress or modern stress directions (e.g., Zoback and
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Zoback, 1980; Pollard et al., 1982; Zoback et al., 1985;
Gudmundsson, 1990; Anglier, 1994; Nemcock and Lisle,
1995; Petit and Mattauer, 1995; Koehn et al., 2007). In
some cases, these types of data may be more correctly in-
terpreted as reflecting the ISAs (e.g., Twiss and Unruh,
1998).

4.6. Lines of zero instantaneous longitudinal strain

At any instant, the deforming rock contains lines of zero
instantaneous longitudinal strain (Ramsay, 1967, p. 173),
meaning lines that are neither elongating nor shortening.
Mathematically, these lines consist of all points ~y that sat-
isfy ~y>S~y = 0. In three-dimensional space, the lines are
not isolated, but rather trace out a cone, which we call the
~a-cone (Fig. 8). This cone separates regions of instanta-
neous shortening and elongation. Eigenvectors of S, whose
associated eigenvalues are negative, lie in the shortening
region, while eigenvectors with positive eigenvalues lie in
the elongating region. If the deformation is plane strain,
then the cone degenerates into a pair of planes that inter-
sect along the eigenvector of S with eigenvalue 0.

On any planar cross-section of three-dimensional space
through the origin, the ~a-cone appears as a pair of lines
(Fig. 8). Working in the context of plane strain, Passchier
(1990) called these lines L-axes, and denoted them La1
and La2 when thinking of them as material lines. We
instead call these lines ~a-axes, and denote them as vectors
~a1 and ~a2 (see Fig. 7), to avoid confusion with the velocity
gradient tensor L.

A material line that begins the deformation lying in
(along) the ~a-cone may or may not remain in the cone.
The deformation may rotate the material line into either
the shortening or elongating region. If we regard the entire
~a-cone as a cone of material, then we can consider where
the finite deformation F moves this cone. In fact, F will
move the cone to some other cone, which we call the~b-cone,

consisting of all points ~y such that
(
F−1~y

)>
S
(
F−1~y

)
= 0.

Like the ~a-cone, the ~b-cone intersects any plane through
the origin as a pair of lines (Fig. 8). We call these the
~b-axes and denote them ~b1 and ~b2 (instead of the Lb1 and
Lb2 of Passchier (1990)). We note that the ~a-cone and
~b-cone are both different from the lines (surface) of zero
finite longitudinal strain described by Ramsay (1967, p.
66) and Talbot (1970).

As illustrated by their position within Fig. 7, the ~b-axes
cannot be computed strictly from S, but require knowl-
edge of F as well. In plane-strain deformation, one may
infer that material lines originally oriented along the ~ai
are sent to the ~bi by the deformation — that is, F~a1 and
F~a2 are parallel to ~b1 and ~b2. For non-plane-strain defor-
mation, however, this assumption does not hold. Instead,
lines on the ~a-axis cone move to lines on the ~b-axis cone,
without being confined to any particular plane such as the
vorticity-normal section.

Assuming that the deformation is not too large, all
material lines will experience either shortening-then-

a-axes
(outer  cone)

b-axes
(inner  cone)

a-axes b-axes

s

e

se

e

s

se

se se

a

b

c

Figure  8.  Davis  and  Titus    

Figure 8: (a) A cartoon for the types of vein behaviors that might
be observed on a plane, including veins that have only shortened
(blue), those that have only elongated (yellow), and those that have
experienced shortening then elongation (green). (b) The orientations
of these veins are used to define the ~a-axes, which separate regions
of shortening (s) from regions of elongation (e and se), and the ~b-
axes, which separate the regions of elongation-only (e) from those
that have experienced shortening followed by elongation (se). (c) In

three dimensions there are ~a-cones (green) and ~b-cones (yellow), that

intersect the observation plane in the ~a- and ~b-axes from (b).
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elongation, elongation-then-shortening, shortening only, or
elongation only (Talbot, 1970; Passchier, 1990). Typically

the ~b-axes separate the elongation-only region from the
shortening-then-elongation region, and the ~a-axes sepa-
rate the shortening-only region from the shortening-then-
elongation region (Fig. 8). (A more detailed character-

ization of the possible configurations of ~a- and ~b-axes is
beyond the scope of this paper, but see Appendix F for
an example of elongating-shortening-elongating behavior.)
Field data such as folded and boudinaged veins have been
used to constrain the ~a- and~b-cones in several studies (e.g.,
Passchier and Urai, 1988; Wallis, 1992; Kumerics et al.,
2005; Short and Johnson, 2006).

4.7. Vorticity vector

The vorticity vector ~w of a progressive deformation is de-
fined to be the curl of the velocity vector field ~̇y (Malvern,
1969; Means et al., 1980; Xypolias, 2010):

~w = curl(~̇y) =

 L32 − L23

L13 − L31

L21 − L12

 = 2

 W32

W13

W21

 .
Notice that ~w depends on only L — not on ~y, ~x, or t —
for a flow that is homogeneous and steady.

The plane perpendicular to the vorticity vector, termed
the vorticity-profile plane (Robin and Cruden, 1994) or
the vorticity-normal section (Jiang and Williams, 1998),
can often be diagnosed in the field as the plane with the
most asymmetric features. This face is important to de-
termine since it yields information on the sense of shear
in movement zones (Lister and Williams, 1979). Many
workers implicitly assume that the vorticity vector is nor-
mal to the X-Z-plane of the finite strain ellipsoid, which
is required by many vorticity analysis methods (Simpson
and De Paor, 1997; Law et al., 2004; Jessup et al., 2007).
However, this assumption does not hold for all deforma-
tions. In cases where triclinic symmetry is inferred from
field data (e.g., Czeck and Hudleston, 2003), it is critical
to examine faces other than the three principal strain sec-
tions, to characterize the orientation of the vorticity vector
accurately. In Section 5.2 we show that assuming a partic-
ular orientation for the vorticity vector can have dramatic
effects on model results.

4.8. Vorticity scalar

The vorticity (scalar) w is defined as the length of the
vorticity vector:

w = |~w| = 2

√
W32

2 +W13
2 +W21

2.

The eigenvalues of W are 0 and ± 1
2wi. The finite deforma-

tion expW rotates material 1
2w radians about the eigen-

vector of W with eigenvalue 0. (In the two-dimensional
case, the eigenvalues are just ± 1

2wi, and expW rotates
about the origin.)

Information about the amount of rigid rotation in a
deforming body, and hence about w, can be obtained
from paleomagnetic data such as vertical axis rotations
(McKenzie and Jackson, 1983).

4.9. Kinematic vorticity

The kinematic vorticity Wk (Truesdell, 1953; Means
et al., 1980) of a progressive deformation is a measure of
the relative amounts of vorticity and stretching. It can be
defined as

Wk =
|W |
|S|

,

where, for any matrix A, |A| denotes the square root of
the sum of the squares of the entries of A (see Appendix
E). In one extreme case, when L = S and W = 0, the
deformation has Wk = 0 and is purely distortional. At the
other extreme, when L = W and S = 0, the deformation
has infinite Wk and is purely rotational.

The kinematic vorticity is also related to the eigenvalues
λ1, λ2, λ3 of L by

Wk =

√
1− λ1

2 + λ2
2 + λ3

2

|S|2

(see Appendix E). If L has only real eigenvalues, then
λ1

2 + λ2
2 + λ3

2 ≥ 0 and so Wk ≤ 1. This real-eigenvalue
case encompasses all of the classic kinematic models (e.g.,
pure shear, simple shear) and all deformations express-
ible in the framework of Tikoff and Fossen (1993). This
expression for Wk also implies that any L with Wk > 1
must have non-real eigenvalues. Non-real eigenvalues in-
troduce a rotational character to the progressive deforma-
tion, which explains the periodic, “pulsating” phenomena
noted by various authors (Ramberg, 1975; Means et al.,
1980).

It merits emphasizing that Wk, being a single number,
cannot completely characterize a homogeneous steady de-
formation (Tikoff and Fossen, 1995). Consider, for any
λ 6= 0 and integer k, the tensor

L =

 −λ −2kπ 0
2kπ −λ 0

0 0 2λ

 .
(This is the volume-preserving case of Eq. (C.1); see
Fig. 4.) The eigenvalues are 2λ and −λ± k2πi. The kine-
matic vorticity is

Wk =
2π√

3

∣∣∣∣kλ
∣∣∣∣ ,

which can be made arbitrarily small or large by adjusting
λ and k. It follows that simple shear is not the only de-
formation with Wk = 1, and that an L with Wk ≤ 1 can
have non-real eigenvalues.

Kinematic vorticity values are computed from field data
using a variety of techniques (e.g., Xypolias, 2010). Some
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techniques rely on rigid clasts (Jeffery, 1922; Ghosh and
Ramberg, 1976; Giorgis and Tikoff, 2004) or, on larger
scale, rigid crustal blocks (Giorgis et al., 2004). Many
methods are graphical, where users plot the relationship
between clast orientation and aspect ratio on specialized
diagrams (Passchier, 1987b; Simpson and De Paor, 1993;
Wallis, 1995; Simpson and De Paor, 1997; Jessup et al.,
2007). Care should be taken in the field, however, be-
cause kinematic vorticity may be highly sensitive to one’s
choice of a vorticity vector. This point is discussed further
in Section 5.2, Fernández and Dı́az-Azpiroz (2009), and
Xypolias (2010).

5. Application: best-fit models of field data

For our second major application of matrix exponentials
and logarithms, we reanalyze a small dataset from Wallis
(1992), a classic paper in the kinematic vorticity literature.
We describe two models, of differing sophistication, that
both integrate position and velocity data in the spirit of
Fig. 7.

Wallis (1992) studied deformed metacherts in the Sanba-
gawa belt in Japan (Fig. 9). His data included (a) orienta-
tions of deformed veins (shortened only, shortened-then-
elongated, and elongated only), (b) one measurement of
the finite strain ellipsoid from thin sections through prin-
cipal planes, and (c) a quartz LPO from one thin section.

Using the relationships outlined in the previous section,
we express the Wallis (1992) data mathematically, in co-
ordinates aligned with the X-, Y -, and Z-axes of the ob-
served finite strain ellipsoid. Based on shortening and
elongation patterns of veins (Fig. 9a), ~a1 is at 32◦ to 40◦,

~a2 is at 120◦ to 127◦, ~b1 is at 12◦ to 20◦, and ~b2 is at 155◦

to 169◦ (measured counterclockwise from the X-axis in the
X-Z-plane). Based on the finite strain ellipsoid measure-
ments (Fig. 9b), the Finger tensor is

FF> =

 µ1
2 0 0

0 µ2
2 0

0 0 µ3
2

 , (10)

where µ1/µ3 is between 3.4 and 3.6 and µ2/µ3 is between
1.6 and 1.7.

Wallis (1992) used the quartz LPO pattern to determine
the orientation of a flow apophysis, by comparing the ori-
entation of foliation (east-west and vertical) to the normal
to the skeleton pattern as it passes through the center of
the lower hemisphere projection (Fig. 9c). These data were
collected in the X-Z-plane, and their interpretation essen-
tially assumes plane-strain conditions. Thus the vorticity
vector ~w is perpendicular to the X-Z-plane, the lines ~ai
are sent to the lines ~bi by the deformation, and the flow
apophysis lies in the plane at 5◦ to 8◦ (measured from the
X-axis). Wallis justified his plane-strain assumption by
noting that the finite strain ellipsoid plots close to plane
strain on the Flinn diagram (Fig. 9b).

Wallis (1992) analyzed these data in two ways, with a
goal of estimating the mean kinematic vorticity Wm. Both

approaches rely on a Mohr circle method (Passchier, 1990),
but the first approach uses only the vein deformation pat-
terns (~a- and ~b-axes), while the second uses only the finite
strain ellipsoid and LPO. Wallis found 0.51 < Wm < 0.7
from his first estimate and 0.35 < Wm < 0.6 from his
second. Because 0 < Wm < 1, Wallis concluded that the
deformation included simple shear (Wm = 1) and pure
shear (Wm = 0) components, and not solely simple shear,
as was suggested by a previous worker (Faure, 1985).

Wallis’ preferred measure of kinematic vorticity, Wm, is
based on the neutral (Passchier, 1988a) or sectional (Pass-
chier, 1997) kinematic vorticity number Wn, which is dif-
ferent from Wk. To our knowledge, Wn has been defined
only for deformations in which the vorticity vector is paral-
lel to an ISA (Xypolias, 2010). Because we do not restrict
ourselves to such deformations, we work with Wk instead
of Wm. As we show below, the uncertainty in kinematic
vorticity is large enough that the distinction between Wm

and Wk is not important.

5.1. First model

Our first attempt at modeling is non-rigorous in two
aspects. First, like Wallis (1992), this model relies on a
significant assumption related to plane strain. Second, the
model prioritizes some of the data (the Finger tensor) over

others (the ~a- and ~b-axes) for no particular reason. We in-
clude this first model in our exposition because it demon-
strates that our techniques can produce results similar to
Wallis’, it provides a real example of recovering the veloc-
ity gradient tensor from the finite deformation tensor, and
it is simpler than our second model.

The basic approach is as follows. Using the Finger ten-
sor data, we recover the finite deformation F up to a ro-
tational ambiguity (see Section 4.3). We resolve the am-

biguity using the ~a- and ~b-axes and a plane-strain-like as-
sumption. Knowing F completely, we then compute L
and other quantities, to check the quality of the model.
For clarity of exposition we work an example based on the
mean values for the data and an assumption of volume
preservation. After the example, we account for variation
in the data and the possibility of volume change.

In our example, the Finger tensor (10) is

FF> =

 3.80 0 0
0 0.84 0
0 0 0.31

 . (11)

Using the technique described in Section 4.3 we deduce
the singular value decomposition F = QDR from FF>.
Wallis’ Finger tensor is already diagonal (because we are
working in coordinates aligned with the finite strain ellip-
soid), so Q = I is trivial and

D = QD =
√
FF> =

 1.95 0 0
0 0.92 0
0 0 0.56

 .
As discussed in Section 4.3, we must use additional data
to determine the rotation R such that F = QDR.

11



constrictional
field

flattening
field

pla
ne
  st
ra
in

X/Y

Y/Z
0 1 2 3

1

2

3
a b c

X

Z

XZ  finite  strain  ellipse

shortening elongationshortening-
then-elongation

Figure  9.  Davis  and  Titus

a
1

a
2

b
2 b

1

Figure 9: The three kinds of data from Wallis (1992) used to estimate a range of values for mean kinematic vorticity. (a) Vein behavior
measured on thin sections parallel to the X-Z strain face. (b) The finite strain ellipsoid is estimated by finding the aspect ratio of deformed
radiolarians on the X-Y -, Y -Z-, and X-Z-planes and assuming no volume change. (c) Quartz c-axes orientations measured from one thin
section. Data are plotted such that foliation is EW-striking and vertical and lineation is EW-trending and horizontal. The skeleton pattern
through the contoured c-axes is shown in bold; the normal to this skeleton is drawn through the center of the diagram to find the angular
difference between the flow apophysis and the foliation demonstrating that deformation was sinistral for these rocks.

If the deformation were plane strain, then two material
lines, that were initially parallel to the ~a-axes, would be
moved to final positions that were parallel to the ~b-axes.
In this first model, let us assume so. That is, assume
that ~bi is parallel to F~ai = QDR~ai. Therefore (QD)−1~bi
is parallel to R~ai. The data tell us that ~b1 and ~b2 are
oriented at 16◦ and 162◦. We compute that (QD)−1~b1
and (QD)−1~b2 are oriented at 45.1◦ and 131.4◦, whereas
~a1 and ~a2 are oriented at 36◦ and 124◦. Averaging the
differences in angles, we conclude that a counterclockwise
rotation of the X-Z-plane through 8.2◦ is needed to take
~ai to (QD)−1~bi. Thus

R =

 cos 8.2◦ 0 − sin 8.2◦

0 1 0
sin 8.2◦ 0 cos 8.2◦

 .
It follows that

F = QDR =

 1.93 0 −0.28
0 0.92 0

0.08 0 0.55

 .
Now that we have modeled the finite deformation F ,

let us test how well the model predicts the other data
from Wallis (1992) that were not used in its construction.
Because F has distinct positive eigenvalues, it has a unique
real logarithm

L = lnF =

 0.66 0 −0.25
0 −0.08 0

0.07 0 −0.58

 .
The flow apophyses are the eigenvectors of L or F (Sec-
tion 4.2). The model predicts an apophysis in the X-Z-
plane oriented at 3◦; this is less than, but compatible with,
the 5◦–8◦ range from the LPO data. Solving ~x>S~x = 0
yields the lines of zero longitudinal strain rate. The model
predicts that they lie at 43◦ and 129◦, which are greater

than, but compatible with, the angle ranges for ~a1 and
~a2 from the vein orientation data. The model predicts a
kinematic vorticity of Wk = |W |/|S| = 0.26.

In this example, we have used mean values for all of
Wallis’ data and we have assumed volume preservation
(detF = 1). To account for uncertainty in the original
data, we repeat the modeling process many times, letting
µ1/µ3, µ2/µ3, ~a1, ~a2, ~b1, and ~b2 vary over their full ranges.
Additionally we consider models in which detF varies be-
tween 0.9 and 1.1. The results are summarized in Table 1.
They demonstrate that we recover the range of values ob-
served in the original field data and the range of results
from Wallis (1992).

5.2. Second model

Our second modeling attempt is more rigorous than the
first. We make no plane-strain assumptions, and we treat
all of the data symmetrically instead of prioritizing some
data over others. The basic idea is to restate the data of
Wallis (1992) as equations in an unknown velocity gradient
tensor L and solve the equations in a least-squares sense.
Then, we compute F and other quantities to check the
model. We demonstrate best-fit models for seven different
forms of L, from the most restricted (simple shear) to the
most general (arbitrary real L).

As many as nine degrees of freedom exist when choosing
L, so we require nine equations to determine L uniquely.
First, the Finger tensor produced by L must match the
finite strain ellipsoid data, which yields the equation

(expL)(expL)> = FF>,

where the left-hand side (LHS) is unknown and the right-
hand side (RHS) is known from Eq. (11). This is an equa-
tion of symmetric 3×3 matrices, and hence amounts to six
scalar equations. Next, the two lines ~ai give two equations

~a>i
1

2

(
L+ L>

)
~ai = 0,
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Wallis’ range modeled range modeled mean

apophysis 5◦–8◦ −2◦–11◦ 4◦

~a1 32◦–40◦ 33◦–51◦ 42◦

~a2 120◦–127◦ 120◦–138◦ 129◦

Wm or Wk 0.35–0.70 0.00–0.71 0.29

Table 1: Comparison of data and results from Wallis (1992) and the values predicted by our first modeling approach. The data that were
used to construct the model are described in the text.

where the ~ai are known. Similarly, the two lines ~bi give
two equations, because F−1~bi, which equals (exp−L)~bi,
must be a line of zero longitudinal strain rate:

~b>i (exp−L)>
1

2
(L+ L>)(exp−L)~bi = 0.

Thus we have ten equations to determine the nine un-
knowns in L.

No exact solution to the ten equations can be expected,
but we can find the L closest to a solution, and hence the
best-fit homogeneous steady deformation, using nonlinear
least squares. Namely, if the ith equation is LHSi = RHSi,
then let

f(L) =

10∑
i=1

(LHSi − RHSi)
2
.

Then f is nonnegative and f = 0 exactly at the solutions
of the equations. We numerically minimize f to find the
L that comes closest to a solution.

The preceding description is sufficient for fitting arbi-
trary real L. To restrict the best-fit process to X-Z-plane-
strain models (the kind considered by Wallis (1992)), we
set L12 = L21 = L23 = L32 = 0 before finding the best
fit for the other parameters. To restrict the best-fit pro-
cess to real-eigenvalue L, it is computationally convenient
to work with the rotational Schur decomposition (see Ap-
pendix A) of L rather than L itself. That is, we substitute
L = QUQ> into the ten equations, where U is upper-
triangular and Q is a rotation. Of L’s nine degrees of
freedom, three are in Q. For example, Q can be expressed
as a product of rotations about the coordinate axes, such
as

Q =

 cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1


·

 cos θ2 0 sin θ2
0 1 0

− sin θ2 0 cos θ2


·

 1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1

 ,
or as the exponential of an antisymmetric matrix:

Q = exp

 0 −θ3 θ2
θ3 0 −θ1
−θ2 θ1 0

 .

(These two Qs are sequential and simultaneous rotation
about the coordinate axes, respectively.) The other six of
L’s degrees of freedom are in

U =

 U11 U12 U13

0 U22 U23

0 0 U33

 .
To find an arbitrary real-eigenvalue L, we use this U as it
is. To restrict the class of model further, we set certain
entries of U to specific values. For example, the triclinic
transpression velocity gradient tensor of Eq. (B.1) is made
upper-triangular by 0 γ̇ cosφ 0

0 −ε̇ 0
0 γ̇ sinφ ε̇

 = T

 0 0 γ̇ cosφ
0 ε̇ γ̇ sinφ
0 0 −ε̇

T>,
where

T =

 1 0 0
0 0 1
0 1 0

 .
Therefore we can find the best-fit triclinic transpression
using U of the form

U =

 0 0 U13

0 U22 U23

0 0 −U22

 .
Table 2 presents the results of our modeling using av-

erage values for the data of Wallis (1992). We found the
best-fit model in seven model classes of increasing sophisti-
cation: simple shear, plane strain in the X-Z-plane, mono-
clinic transpression, triclinic transpression, triclinic trans-
pression with inclined extrusion, general deformation with
real-eigenvalue L, and general deformation (i.e. arbitrary
real L). All of the models are presented in global coor-
dinates (those aligned with the finite strain ellipsoid), so
that they may be directly compared to each other. Be-
cause most of the models were computed via the rotational
Schur decomposition, we can also present them in local co-
ordinates that display the symmetries of each model more
clearly than do global coordinates. However, the local co-
ordinate systems vary from model to model, so the local
forms of the tensors cannot be directly compared.

What is striking about the modeling results is the varia-
tion in kinematic vorticity. Plane strain in the X-Z-plane,
which is essentially the model class used by Wallis (1992),
produces Wk = 0.39. As more degrees of freedom are in-
corporated into the modeling, Wk steadily climbs from this
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DF Wk F (local coordinates) F (global coordinates)

simple shear 4 1

 1 1.38 0
0 1 0
0 0 1

  1.54 −0.67 0.89
0.14 0.82 0.24
−0.22 0.27 0.64


X-Z-plane strain 5 0.39

 1.83 0 −0.47
0 0.92 0

0.05 0 0.56


monoclinic
transpression

5 0.40

 1 0.69 0
0 1.78 0
0 0 0.56

  1.89 −0.46 −0.09
0.22 0.88 0.03
−0.01 0.05 0.57


triclinic/inclined
transpression

6 0.47

 1 0.66 0
0 1.75 0
0 −0.36 0.57

  1.86 −0.42 −0.38
0.20 0.90 0.00
0.04 0.00 0.56


triclinic transpression
with inclined extrusion

8 0.66

 0.58 −0.26 0
0 1.25 0
0 1.03 1.39

  1.79 −0.65 −0.39
0.32 0.86 0.04
0.04 −0.03 0.56


L with real
eigenvalues

9 1.00

 1.00 −0.76 0.59
0 1.00 −1.02
0 0 1.00

  1.71 0.78 −0.51
−0.43 0.76 −0.29
0.00 0.18 0.53


general L 9 2.95

 0.57 0.92 −1.61
−0.51 −0.56 −0.51
−0.43 0.35 0.05


Table 2: Results from our second method of modeling data from Wallis (1992). Columns include the number of degrees of freedom (DF),
the kinematic vorticity (Wk), and the finite deformation tensor in global and local (where appropriate) coordinate systems. Numbers with
decimal points were computed during the best-fit process; numbers without decimal points were fixed before the best-fit process.

value. It reaches 1.00 in the sixth model, which is the best
fit among all models with real-eigenvalue velocity gradient
tensors L. Coincidentally, Wk = 1.00 is consistent with the
simple shear interpretation of Faure (1985), which Wallis
(1992) set out to refute.

The sixth model has only one independent eigenvec-
tor, and its kinematic vorticity is the largest that can be
achieved with real eigenvalues. These facts suggest that
the real-eigenvalue condition significantly constrains the
best-fit process, which is worrisome because geology does
not require L to have real eigenvalues (e.g., Iacopini et al.,
2010). The final row of the table shows the result of al-
lowing L with arbitrary complex eigenvalues: The kine-
matic vorticity increases to 2.95. This result suggests that
to match the available data the deformation must have a
large rotational component.

6. Discussion and conclusion

Matrix exponentials are not new. They were defined by
Laguerre in 1867 and applied to differential equations as
early as 1938 (Higham, 2008). The matrix exponential so-
lution of Eq. (1) is fundamentally equivalent to any other
method of solving this simple differential equation. Nev-
ertheless the exponential/logarithm framework is valuable
to the analysis of geological deformation in several ways.

First, Eq. (1) and Eq. (2) are not tied to any particular
coordinate system or model subclass. They express all ho-
mogeneous steady models, from the simple shear of Ram-

say and Graham (1970) to the general deformation of Soto
(1997), in a single closed-form expression that can be com-
puted algorithmically, either numerically or symbolically.
The matrix exponential simplifies the mathematical pre-
sentation of homogeneous steady deformations and clari-
fies the relationships among concepts. For example, the
velocity gradient tensor L and finite deformation tensor
F have the same eigenspaces (the flow apophyses). This
fact can be deduced in several different ways, but the ex-
ponential yields a particularly simple proof. In Section 5,
the exponential lets us convert both velocity- and position-
related data into explicit equations to be fit by a model.
Because so many kinds of data are made available to the
fitting process, we can try models with many degrees of
freedom and explore how different classes of models affect
our conclusions.

Second, without the exponential we would be unlikely
to stumble upon the logarithm, which is concretely useful.
For example, computing algebraic expressions of simulta-
neous deformations by the ln-sum-exp method is dramati-
cally easier than computing them by split-stepping. Also,
the logarithm lets us interpolate finite deformations by
progressive deformations, yielding a helpful visualization
tool (see Appendix F).

Third, although this review article has focused on pro-
viding a complete description of all homogeneous steady
deformations, our framework can also be applied to geolog-
ically more-realistic non-steady deformations. For exam-
ple, Provost et al. (2004) extended Eq. (2) to some special
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non-steady cases (see Appendix B). Steady deformations
can also be sequenced to model a non-steady deforma-
tion (Section 3). The theory of steady deformations can
be used negatively, to show that a given dataset could
not have arisen through a steady process (e.g., Horsman
and Tikoff, 2007). Also, to solve a non-steady differential
equation, one typically resorts to numerical approximation
methods such as the Euler method, each step of which is
steady and hence treatable by our framework (see Sec-
tion 6.1 below).

Finally, the exponential framework reveals a hidden
mathematical structure underlying rock deformation. The
set of all homogeneous finite deformations forms a Lie
group — a set of transformations or symmetries (see, e.g.,
Belinfante and Kolman, 1972; Gilmore, 1974; Curtis, 1984;
Hall, 2003; Pollatsek, 2009). The Lie group of homoge-
neous finite deformations is profitably viewed as a curved
subset of the set of all 3 × 3 matrices. Meanwhile, the
set of all velocity gradient tensors forms a related struc-
ture, which mathematicians call the Lie algebra associated
to the Lie group. The Lie algebra is a flat vector space.
The matrix exponential function “wraps” the flat Lie al-
gebra around the curved Lie group in a well-behaved way
(Fig. 10a). In many cases, questions about a Lie group
can be recast as easier questions about its Lie algebra
(Gilmore, 1974, p. 117). The ln-sum-exp technique of Sec-
tion 3 is an example: To simultaneously superimpose two
homogeneous deformations, we “pull them back” to the
Lie algebra using the matrix logarithm, add them there,
and then “push” the result into the Lie group using the
matrix exponential.

We now describe two other potential applications of Lie
groups to geology: non-steady deformations and statistics
of deformation tensors.

6.1. Non-steady homogeneous deformations

The matrix exponential framework of this paper opens
up the possibility of viewing a deformation history as a
path in a Lie group. The steady methods, on which
we have focused throughout this paper, serve as build-
ing blocks for numerical methods on that Lie group. This
approach may lead to improved precision in modeling non-
steady deformations.

Consider the problem of characterizing deformation in
a conglomerate (e.g., Hossack, 1968; Ramsay and Huber,
1983) using the shape preferred orientations (SPO) of
clasts. Early workers typically assumed that clasts be-
have passively during deformation and therefore record
bulk strain (e.g., Ramsay, 1967; Dunnet, 1969; Lisle, 1985).
However, in some naturally deformed conglomerates, the
clasts and matrix have different viscosities (e.g., Horsman
et al., 2008; Czeck et al., 2009). As a consequence, the
clasts do not deform passively, and assuming so leads to
mis-estimation of strain (e.g., Gay, 1968; Meere et al.,
2008).

Accounting for viscosity contrast in deforming clasts
requires a more sophisticated model. For simplicity, as-

sume that the host rock is deforming homogeneously and
steadily, and that it contains a single ellipsoidal inclusion
of different viscosity. The inclusion’s deformation was de-
scribed dynamically by Eshelby (1957, 1959) and Bilby
et al. (1975). It is homogeneous but non-steady, being

governed by ~̇y = K~y, where K depends on the inclusion’s
shape and orientation, and hence on time. That is, the
velocity gradient tensor K and the ellipsoid tensor E (see
Eq. (9)) interact over time to produce a complicated and
subtle deformation history. Computing the final ellipsoid
E (for comparison to SPO data) requires a numerical ap-
proximation, the details of which vary from author to au-
thor (e.g., Freeman, 1987; Jiang, 2007).

We propose that this problem could be solved by writ-

ing E =
(
F−1

)>
F−1 and treating F−1 using a numerical

approximation method on the Lie group of homogeneous
deformations (e.g., Munthe-Kaas, 1998). Fig. 10b illus-
trates our approach as a cartoon. We approximate the
non-steady path as a sequence of steps (shown in green).
Each step is steady in the sense of Eq. (1). Viewed in the
Lie algebra, the approximation is a continuous path made
of straight line segments. The matrix exponential sends
this piecewise-linear path into the Lie group, producing
an approximate deformation path that remains in the Lie
group at all times. In contrast, a numerical approximation
of F−1 as a mere 3 × 3 matrix (shown in orange) ignores
the curved geometry of the Lie group within the set of 3×3
matrices, and hence leaves the Lie group.

For the deforming ellipsoid problem, this Lie group
approach has two practical advantages. It automati-
cally preserves the determinant, symmetry, and positive-
definiteness of E, so that the simulated inclusion is al-
ways an ellipsoid of the correct volume, rather than a
hyperboloid or other unphysical shape. Also, this ap-
proach seems to be highly precise (Munthe-Kaas, 1998).
More development and testing is needed to evaluate its
performance relative to the methods of Freeman (1987)
and Jiang (2007), which do not use Lie groups explicitly
but which do enjoy some of the same advantages. In any
event, the Lie group view of deformation, which follows
from the matrix exponential, reveals new possibilities for
the modeling of SPO data and other non-steady geological
problems.

6.2. Statistics of deformation tensors

Viewing finite deformations as elements of a Lie group
opens up the possibility of doing statistics on that Lie
group. To explain this idea, let us return to our analysis
of Wallis (1992) from Section 5. Our goal in that section is
not to criticize kinematic vorticity as a measure of defor-
mation, or to suggest that general models should always be
used in place of specialized ones. Rather, in demonstrat-
ing how models can be sensitive to choices made during
the modeling process, we hope to encourage geologists to
state their assumptions explicitly and to explore the effect
of the assumptions on model results in their studies. The
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Figure 10: (a) The Lie algebra is “wrapped around” the Lie group by the matrix exponential. (b) The Lie algebra facilitates numerical
methods for differential equations on the Lie group. A deformation path in the Lie group is shown in black. In the example of Section 6.1,
this is the true path of F−1. In the Lie algebra there is a corresponding path, also in black. Two approximations to this path are illustrated
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path accumulates more error than the green path, and in fact leaves the Lie group entirely. (c) Statistics on the Lie group may be more easily
formulated on the Lie algebra.
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best-fit process we describe can be used to test models with
many degrees of freedom. However, it does not attempt
to account for variation in the data, describe variation in
the model parameters, indicate which model parameters
are most useful for describing the data, etc.

This lack of statistical thoroughness or rigor seems to
be common in structural geology modeling. The reason,
we believe, is that structural geology data and concepts
require advanced, differential-geometric statistical tech-
niques. To do statistics with any kind of object, one must
be able to define and integrate probability distributions
over sets of that kind of object. In elementary statistics
of a quantitative variable, for example, the data are real
numbers and the statistics is formulated in terms of prob-
ability distributions on the set of real numbers. Struc-
tural geology relies upon many geometric concepts such as
orientations of lines and planes, ellipsoidal markers, and
deformation tensors. Statistics of structural geology data
therefore requires sets of orientations, sets of ellipsoids,
sets of deformation tensors, etc., over which we can inte-
grate. In mathematics, these “sets of geometric objects”
are often described in terms of Lie groups. Fig. 10c is a
cartoon of this idea. It shows a probability distribution (in
blue) on a Lie group, constructed by “pushing forward” a
probability distribution on the Lie algebra.

Geology already employs some statistics of this kind.
For example, directional and orientation statistics (Fisher,
1953; Downs, 1972; Mardia, 1972; Bingham, 1974;
Cheeney, 1983; Borradaile, 2003; Tauxe, 2010) amount to
statistics using Lie groups of rotations. Statistics of el-
lipsoids, which can also be viewed as statistics on a Lie
group, have been applied to problems such as magnetic
susceptibility (e.g., Borradaile, 2003; Tauxe, 2010).

Oertel (1981) took some preliminary steps toward a
statistics of deformation tensors themselves. Starting from
a set of finite strain ellipsoids, he first computed symmet-
ric finite deformation tensors that explain them. He real-
ized that it is not physically reasonable to average these
tensors, but that it is reasonable to average infinitesimal
deformation tensors, whose effects do approximately add.
He used 1000th roots of the finite deformations as infinites-
imal deformations, computed a mean and standard devia-
tion for them, and performed a χ2 test. However, he con-
ceded that the assumptions of his analysis were uncertain,
it was not clear whether the sample was large enough to
support the conclusions, etc. In short, he lacked a rigorous
statistical theory.

The Lie group framework clarifies Oertel’s process. Be-
cause the Lie group is curved, the average of two or more
finite deformation tensors (yellow and blue in Fig. 10c)
may not be an element of the Lie group (as shown in or-
ange). The infinitesimal deformations that Oertel com-
puted are essentially approximations to velocity gradient
tensors. Because the Lie algebra is flat, the velocity gradi-
ent tensors can be averaged (green), and the average can
be “pushed forward” to the Lie group and taken as the
average finite deformation. (See Appendix F for an exam-

ple.)
In Sections 4 and 5, we present a unified, streamlined

mathematical treatment of geological data and their kine-
matic modeling. The natural next step is to develop a
unified, streamlined statistical treatment of these data and
their associated kinematic models. Lie groups and their re-
lated spaces are an ideal setting for such a theory. In fact,
much of the required mathematics has been constructed
(e.g., Helgason, 1984; Wijsman, 1990; Murray and Rice,
1993), and researchers in other fields, such as medical
imaging (e.g., Fletcher et al., 2004), are exploring similar
avenues.

6.3. Conclusion

One could view the matrix exponential/logarithm
framework as an ending — the final word, perhaps, on the
solution of Eq. (1), one of the simplest differential equa-
tions in all of mathematics. We hope that the reader will
regard exponentials and logarithms instead as a starting
point — an invitation to investigate the application of Lie
groups to geometric problems in structural geology.
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Appendix A. Matrix decompositions

In this section we review the Jordan, Schur, and singular
value decompositions. We then use the decompositions to
evaluate the generality of earlier models of deformation by
Tikoff and Fossen (1993) and Soto (1997).

A Jordan block is a square matrix with a single value
λ repeated along its diagonal, 1s immediately above the
diagonal, and 0s elsewhere:

[
λ
]
,

[
λ 1
0 λ

]
,

 λ 1 0
0 λ 1
0 0 λ

 , . . . .

A Jordan matrix is a matrix comprising Jordan blocks
along its diagonal, such as λ1 1 0

0 λ1 0
0 0 λ2


(which has a 2× 2 block and a 1× 1 block).

Any square matrix A can be decomposed as A =
PJP−1, where P is a change-of-basis matrix and J is a
Jordan matrix. This is called the Jordan decomposition of
A (e.g., Halmos, 1958; Hoffman and Kunze, 1961). The
matrix J , which is unique up to permutations of its Jor-
dan blocks, is called the Jordan canonical form of A. The
change-of-basis matrix P is not unique, because it can
be replaced with PS, where S is any matrix satisfying
SJS−1 = J .

An important special case occurs when all of the blocks
in J are 1 × 1. For then J is diagonal, and Jordan de-
composition is simply diagonalization. There is a precise
mathematical sense in which almost all matrices are diag-
onalizable. A nondiagonalizable matrix is not numerically
stable, as an arbitrarily small perturbation to the entries
will, with probability 1, make the matrix diagonalizable.
This characteristic makes the Jordan decomposition inap-
propriate for matrices derived from empirical data. How-
ever, geologists frequently use nondiagonalizable matrices
to develop models — simple shear being the archetype —
and we continue the tradition in this paper.

This paper also uses the Schur decomposition (e.g., Lay,
1994), which comes in several flavors. First, any complex
square matrix A can be written as a product A = QUQ−1

of complex matrices, where U is upper-triangular and
Q−1 = Q̄>. Second, if A is real and has only real
eigenvalues, then a real Q and U can be found; that is,
A = QUQ−1, where U is real upper-triangular and Q is
orthogonal. This is a real Schur decomposition. Schur de-
compositions are not unique. For example, if A = QUQ>

is a real Schur decomposition, then so is A = Q′U ′Q′>,
where

Q′ = Q

 1 0 0
0 1 0
0 0 −1

 ,

U ′ =

 U11 U12 −U13

0 U22 −U23

0 0 U33

 .
Notice that detQ′ = −detQ; therefore either Q or Q′ is
a rotation. In summary, a real A with real eigenvalues al-
ways has a real Schur decomposition A = QUQ> in which
Q is a rotation and U is real upper-triangular; we call this
a rotational Schur decomposition in this paper.

Schur decomposition enjoys two advantages over Jordan
decomposition. First, it is numerically robust (Moler and
Van Loan, 2003). Second, it uses only orthogonal changes
of basis, which are often more convenient than arbitrary
changes of basis. The disadvantage of Schur decomposition
is that the upper-triangular matrix U is not as simple as
the Jordan canonical form J .

The third decomposition used in this paper is the sin-
gular value decomposition (e.g., Lay, 1994; Provost et al.,
2004): For any real square matrix F there exist orthogonal
matrices Q and R and a diagonal matrix D, such that all
entries of D are nonnegative real and F = QDR.

These decompositions are computed in MATLAB
by jordan, schur, and svd, in Mathematica by
JordanDecomposition, SchurDecomposition, and
SingularValueDecomposition, and in Maple by
JordanForm, SchurForm, and Svd.

The Schur decomposition illuminates the kinematic
model of Tikoff and Fossen (1993). They described de-
formations arising from an arbitrary upper-triangular ve-
locity gradient tensor. But any real-eigenvalue L can
be written, via the rotational Schur decomposition, as
L = QUQ>, where Q is a rotation and U is upper-
triangular. It follows that the progressive deformation ten-
sor is

exp tL = exp t
(
QUQ>

)
= Q (exp tU)Q>.

By computing exp tU for any U , Tikoff and Fossen (1993)
effectively computed exp tL for any real-eigenvalue L.
Their method does not address L with non-real eigenval-
ues.

Soto (1997) described deformations arising from velocity
gradient tensors of the form

L = R>NR+D,

whereR is a rotation, N is strictly upper-triangular, andD
is diagonal. This model includes that of Tikoff and Fossen
(1993) as a special case when R is the identity tensor. If
we allow for rotational changes of coordinates then Soto’s
model handles all L. That is, for every 3 × 3 matrix L
there exist a rotation R, a strictly upper-triangular N ,
and a diagonal D, such that

L = N +RDR> = R
(
R>NR+D

)
R>.

(Given an L, define a matrix A by Aij = Lij if i ≥ j,
Aij = Lji if i < j. Then A is symmetric, so it can be
diagonalized by a rotational change of basis: A = RDR>.
Let N = L − A. Then N is strictly upper-triangular and
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L = N + RDR>.) On the other hand, if we do not allow
for additional rotational changes of coordinates then Soto’s
model is not fully general. For example, for

L =

 −1 1 0
1 −1 0
0 0 2


there is no real invertible R, real strictly upper-triangular
N , and real diagonal D with L = R−1NR + D. (If L =
R−1NR+D, then

(L−D)
3

=
(
R−1NR

)3
= R−1N3R = 0;

the three resulting equations in D11, D22, D33 have no
simultaneous solution.)

Appendix B. Exponentials

In this section we review the matrix exponential and
work several geologically relevant examples. References
include Belinfante and Kolman (1972); Gilmore (1974);
Curtis (1984); Hall (2003); Moler and Van Loan (2003);
Pollatsek (2009).

In calculus, the exponential function expx = ex is de-
scribed by the power series

expx =

∞∑
k=0

1

k!
xk = 1 + x+

1

2
x2 + · · · .

Similarly, for any square matrix L we can define

expL =

∞∑
k=0

1

k!
Lk = I + L+

1

2
L2 + · · · .

This series converges for any L, so exp is a well-defined
matrix exponential function. An important special case
occurs when L is strictly upper-triangular or strictly lower-
triangular; then Ln = 0 (where L is n × n), so the series
truncates after n terms. For example,

exp

[
0 L12

0 0

]
=

[
1 L12

0 1

]
and

exp

 0 L12 L13

0 0 L23

0 0 0


=

 1 L12 L13 + 1
2L12L23

0 1 L23

0 0 1

 .
The matrix exponential respects change of basis:

expPJP−1 = P (exp J)P−1

for any J and invertible P . This property greatly expedites
computations, as follows. First, the Jordan blocks (see

Appendix A) have simple exponentials:

exp
[
λ
]

=
[
eλ
]
,

exp

[
λ 1
0 λ

]
=

[
eλ eλ

0 eλ

]
,

exp

 λ 1 0
0 λ 1
0 0 λ

 =

 eλ eλ 1
2e
λ

0 eλ eλ

0 0 eλ

 .
Second, the exponential function operates independently
on each block in a Jordan matrix. For example,

exp

 λ1 1 0
0 λ1 0
0 0 λ2

 =

 eλ1 eλ1 0
0 eλ1 0
0 0 eλ2

 .
So, we have a concrete algorithm for computing expL,
for any matrix L: Find the Jordan decomposition L =
PJP−1, compute expJ using the examples above, and
then reconstruct expL = P (exp J)P−1. This method is
more appropriate for symbolic than for numerical calcula-
tion, because the Jordan canonical form is not numerically
robust (see Moler and Van Loan (2003) for other methods
of computing the exponential).

Here are some other properties enjoyed by the matrix
exponential.

• exp 0 = I, where 0 is the zero matrix.

• L and expL commute, meaning L(expL) = (expL)L.

• If L1 and L2 commute, then

exp(L1 + L2) = (expL1)(expL2).

If L1 and L2 do not commute, then the equation does
not hold in general. There is a more general for-
mula, called the Baker-Campbell-Hausdorff formula,
that we do not discuss here.

• Whether or not L1 and L2 commute, the Trotter prod-
uct formula (Trotter, 1959) states that

exp(L1 + L2) =

lim
n→∞

(
exp

(
1

n
L1

)
exp

(
1

n
L2

))n
.

• (expL)n = expnL for any integer n.

• If λ is an eigenvalue of L, then expλ is an eigenvalue
of expL, with the same eigenspace. In particular, if L
has only real eigenvalues then expL has only positive
eigenvalues.

• The exponential of a symmetric matrix is symmet-
ric. The exponential of an antisymmetric matrix is
orthogonal.

• det(expL) = exp(trL).
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• If K is a matrix dependent on t and K̇K = KK̇, then

d

dt
expK = K̇(expK) = (expK)K̇.

The final property listed above explains why ~y =
(exp tL)~x solves the differential equation (1). Given any L
— even a time-dependent one — let

K =

∫ t

0

L(τ) dτ

be the component-wise antiderivative of L, such that K(0)
is the zero matrix. If K̇ = L commutes with K, then ~y =
(expK)~x solves ~̇y = L~y. This paper has simply focused
on the case where L is constant, because it seems to be
most geologically relevant. Provost et al. (2004) mention
a slightly less-special case: when L is of the form L(t) =
f(t)L(0) for a scalar function f .

The matrix exponential is computed in Mathematica
by MatrixExp, in Maple by MatrixExponential, and in
MATLAB by expm.

We now work four increasingly sophisticated examples
of using Eq. (2) to solve the differential equation (1). In
each example we compute the Jordan decomposition of tL,
exponentiate the Jordan matrix, and recombine. However,
in many cases one can shortcut the process.

Appendix B.1. Simple shear

Two-dimensional simple shear has velocity gradient ten-
sor

L =

[
0 γ̇
0 0

]
for some constant γ̇ that represents the shear strain rate.
The matrix tL is strictly upper-triangular, so its exponen-
tial is easily computed:

exp tL =

[
1 tγ̇
0 1

]
.

As t goes from 0 to 1, this tensor interpolates, in a natural
way, between the identity and finite simple shear with off-
diagonal entry γ̇:

expL =

[
1 γ̇
0 1

]
.

In simple shear, it is common to denote the off-diagonal
entry in L by γ̇ and the off-diagonal entry in F = expL
by γ, but they are equal as long as the time scale is chosen
so that deformation takes one unit of time.

Appendix B.2. Coaxial deformation

The velocity gradient tensor

L =

 λ1 0 0
0 λ2 0
0 0 λ3

 ,

where the λi are arbitrary constants, describes a three-
dimensional coaxial deformation. To compute the progres-
sive deformation corresponding to L, we first multiply by
t:

tL =

 tλ1 0 0
0 tλ2 0
0 0 tλ3

 .
Then we compute the matrix exponential. For a diagonal
matrix this is easy; we just exponentiate each diagonal
entry:

exp tL =

 µ1
t 0 0

0 µ2
t 0

0 0 µ3
t

 ,
where µi = eλi . As t goes from 0 to 1, this tensor interpo-
lates between the identity and the coaxial finite deforma-
tion tensor.

More generally, let L be any symmetric tensor. Then L
diagonalizes as L = QDQ−1, where Q is orthogonal. The
deformation produced by L is coaxial, with stretching and
shortening directions given by the column vectors of Q.
The progressive deformation tensor is

exp tL = exp t
(
QDQ−1

)
= Q(exp tD)Q−1.

Appendix B.3. Triclinic transpression

The triclinic transpression of Lin et al. (1998) is a more
complicated deformation (see Fig. 1), described by the ve-
locity gradient matrix

L =

 0 γ̇ cosφ 0
0 −ε̇ 0
0 γ̇ sinφ ε̇

 (B.1)

for some constants ε̇, γ̇, φ. As always, the progressive
deformation is ~y = (exp tL)~x; however, the details of how
exp tL is computed depend somewhat on ε̇, γ̇, and φ. In
the typical and most geologically useful case, when ε̇ 6= 0,
tL is diagonalizable as

tL = P

 0 0 0
0 −tε̇ 0
0 0 tε̇

P−1,
where

P =

 1 2γ̇ cosφ 0
0 −2ε̇ 0
0 γ̇ sinφ 1

 .
We exponentiate the diagonal matrix and recombine as
follows.

exp tL = P

 1 0 0
0 e−tε̇ 0
0 0 etε̇

P−1

=

 1 γ̇
ε̇ (1− e−ε̇t) cosφ 0

0 e−ε̇t 0

0 γ̇
ε̇ sinh(ε̇t) sinφ eε̇t

 . (B.2)
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Eq. (B.2) agrees with Lin et al. (1998).
The special case of ε̇ = 0 can be handled in the same way.

The matrix tL may not be diagonalizable, but it can still
be exponentiated in terms of its Jordan decomposition.

Appendix B.4. Upper-triangular deformation

For a final example, consider the upper-triangular de-
formation (Fig. 1) from Tikoff and Fossen (1993). It arises
from a velocity gradient tensor of the form

L =

 ε̇x γ̇xy γ̇xz
0 ε̇y γ̇yz
0 0 ε̇z

 .
If ε̇x, ε̇y, and ε̇z are distinct, then L is diagonalizable as

L = P

 ε̇x 0 0
0 ε̇y 0
0 0 ε̇z

P−1,
where

P =

 1
−γ̇xy
ε̇x−ε̇y

γ̇xy γ̇yz+γ̇xz(ε̇z−ε̇y)
(ε̇x−ε̇z)(ε̇y−ε̇z)

0 1
−γ̇yz
ε̇y−ε̇z

0 0 1

 .
The progressive deformation is given by

exp tL = P

 etε̇x 0 0
0 etε̇y 0
0 0 etε̇z

P−1

=

 eε̇xt γ̇xy
eε̇xt−eε̇yt
ε̇x−ε̇y γ̇xz

eε̇xt−eε̇zt
ε̇x−ε̇z + a

0 eε̇yt γ̇yz
eε̇yt−eε̇zt
ε̇y−ε̇z

0 0 eε̇zt

 ,
where for typographical convenience we have introduced
the notation

a =
γ̇xyγ̇yze

ε̇xt

(ε̇x − ε̇y)(ε̇x − ε̇z)

− γ̇xyγ̇yze
ε̇yt

(ε̇x − ε̇y)(ε̇y − ε̇z)

+
γ̇xyγ̇yze

ε̇zt

(ε̇x − ε̇z)(ε̇y − ε̇z)
.

If ε̇x, ε̇y, and ε̇z are not distinct, then tL may not be
diagonalizable, but we can always compute its Jordan de-
composition and exponentiate from there. There are sev-
eral subcases. For example, when ε̇x = ε̇y = ε̇z (just call
them ε̇) and γ̇xy, γ̇xz, γ̇yz 6= 0, the Jordan decomposition
of tL is

tL = P

 tε̇ 1 0
0 tε̇ 1
0 0 tε̇

P−1,
where

P =

 1 0 0

0 1
tγ̇xy

−γ̇xz
t2γ̇2

xy γ̇yz

0 0 1
t2γ̇xy γ̇yz

 .

This implies that

exp tL =

 eε̇t γ̇xyte
ε̇t γ̇xzte

ε̇t + a
0 eε̇t γ̇yzte

ε̇t

0 0 eε̇t

 ,
where a = 1

2 γ̇xyγ̇yzt
2eε̇t. These calculations agree with

Tikoff and Fossen (1993).

Appendix C. Logarithms

In this section we review the matrix logarithm and work
a few geologically relevant examples. Logarithms are sub-
tle. Some matrices do not have logarithms, while others
have more than one. To define a well-defined logarithm
function, we must place restrictions on both F and lnF .

If F is a square, real matrix, all of whose eigenvalues are
either nonreal or positive (that is, there are no real eigen-
values less than or equal to 0), then there exists a unique
real matrix L such that expL = F and all eigenvalues of L
have imaginary part in (−π, π) (Kenney and Laub, 1989).
We call this matrix L the principal logarithm of F , and
denote it lnF .

In particular, if all of the eigenvalues of F are real and
positive, then lnF has only real eigenvalues. If, in addi-
tion, every eigenspace of F is one-dimensional, then lnF
is the only real matrix that exponentiates to F (Culver,
1966, Theorem 2). This mathematical special case — a
positive-eigenvalue F with one-dimensional eigenspaces —
encompasses most finite deformation tensors of geological
interest, including pure and simple shears and many com-
binations thereof, but excluding pure rotations. On the
other hand, when some eigenspace of F has dimension
greater than 1, this eigenspace can be exploited to pro-
duce other real L such that expL = F . An example is
given below.

Now we describe how to compute principal logarithms.
The power series for ln(1 + x) gives us a matrix power
series

ln(I +N) =

∞∑
k=1

(−1)k+1

k
Nk

= N − 1

2
N2 +

1

3
N3 − · · · .

This immediately yields logarithms for certain simple
shear matrices — those of the form I+N , with N strictly
upper-triangular:

ln

[
1 N12

0 1

]
=

[
0 N12

0 0

]
,

ln

 1 N12 N13

0 1 N23

0 0 1


=

 0 N12 N13 − 1
2N12N23

0 0 N23

0 0 0

 .
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A Jordan block with eigenvalue µ can be written in the
form µ(I +N), where I +N is of the form just discussed.
Its logarithm is then (lnµ)I + ln(I + N). Here are the
crucial examples.

ln
[
µ
]

=
[

lnµ
]
,

ln

[
µ 1
0 µ

]
=

[
lnµ 1

µ

0 lnµ

]
,

ln

 µ 1 0
0 µ 1
0 0 µ

 =

 lnµ 1
µ

−1
2µ2

0 lnµ 1
µ

0 0 lnµ

 .
Because the matrix exponential respects Jordan blocks and
change of basis, so must its inverse the matrix logarithm.
For any positive-eigenvalue Jordan matrix J , compute ln J
by taking logarithms of its Jordan blocks individually. For
any positive-eigenvalue matrix F , compute lnF via its Jor-
dan decomposition F = PJP−1:

lnPJP−1 = P (ln J)P−1.

As long as F has only positive eigenvalues and only real
P are used in the Jordan decomposition, this construction
produces a well-defined matrix logarithm lnF satisfying
the following properties:

• exp(lnF ) = F .

• ln(expL) = L for any real-eigenvalue L.

• If µ > 0 is an eigenvalue of F , then lnµ is an eigen-
value of lnF with the same eigenspace. In particular,
lnF has only real eigenvalues.

• F and lnF commute.

• If lnF1 and lnF2 commute, then

ln(F1F2) = lnF1 + lnF2.

Matrix logarithms are computed in MATLAB by logm

and in Maple by MatrixFunction. Mathematica comes
with no built-in matrix logarithm function. Appendix F
gives Mathematica code for computing logarithms via the
Jordan decomposition.

We now work three geologically relevant examples, using
matrix logarithms to compute the velocity gradient tensor
L from the finite deformation tensor F . The basic process
is to compute the Jordan decomposition of F = PJP−1,
then the principal logarithm ln J , then the product L =
P (ln J)P−1.

Appendix C.1. Simple shear

Consider the two-dimensional simple shear

F =

[
1 γ
0 1

]
.

Its principal logarithm is

lnF =

[
0 γ
0 0

]
.

In fact, this matrix is the only real logarithm of F . It leads
to the progressive simple shear matrix

exp(t lnF ) =

[
1 tγ
0 1

]
,

which at time t = 1 equals F . These calculations agree
with the simple shear example in Appendix B.

Appendix C.2. Coaxial deformation

Let

F =

 µ1 0 0
0 µ2 0
0 0 µ3


(with µ1, µ2, µ3 > 0) be a coaxial finite deformation tensor.
Because it is diagonal, its principal logarithm is easy to
compute:

lnF =

 lnµ1 0 0
0 lnµ2 0
0 0 lnµ3

 .
If the µi are distinct, then this matrix is the only real
logarithm of F . Taking it as our velocity gradient tensor,
we obtain a progressive deformation tensor

exp(t lnF ) =

 µ1
t 0 0

0 µ2
t 0

0 0 µ3
t

 ,
which interpolates the coaxial finite deformation in a nat-
ural way.

Continuing this coaxial example, consider the special
case of µ1 = µ2. Now the tensor F has an eigenvalue
with a two-dimensional eigenspace, which provides room
for infinitely many logarithms, as follows. For any integer
k, let

Lk =

 lnµ1 −2kπ 0
2kπ lnµ1 0

0 0 lnµ3

 . (C.1)

Fig. 4 illustrates Lk for k = 0, 1. For every integer k,
expLk = F . Thus F has infinitely many real logarithms.
(There are even more logarithms of F than these. See
Appendix F and Gantmacher (1959, p. 239) for a complete
description.) The progressive deformation tensor

exp tLk = µ1
t cos(t2kπ) −µ1

t sin(t2kπ) 0
µ1
t sin(t2kπ) µ1

t cos(t2kπ) 0
0 0 µ3

t


resulting from Lk rotates space k times about the x3-axis,
but this extraneous rotation is undetectable in the finite
deformation, which for all k is the same ~y = F~x. Among
all of the progressive deformations ~y = (exp tLk)~x, the
“simplest” is the one with no extraneous rotation; it is the
one arising from L0, which is the only Lk with only real
eigenvalues, and which equals the principal logarithm lnF
(see Fig. 4a).
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Appendix C.3. Upper-triangular deformation

Finally, suppose that we have an arbitrary upper-
triangular finite deformation

F =

 F11 F12 F13

0 F22 F23

0 0 F33


and that we want to infer the corresponding progressive
deformation. We first compute the Jordan decomposition;
in the typical case, when F11, F22, and F33 are distinct,
the decomposition is

F = P

 F11 0 0
0 F22 0
0 0 F33

P−1,
where

P =

 1 −F12

F11−F22

−F13F22+F12F23+F13F33

(F11−F33)(F22−F33)

0 1 −F23

F22−F33

0 0 1

 .
Then we compute the progressive deformation tensor

exp(t lnF ) = P

 F11
t 0 0

0 F22
t 0

0 0 F33
t

P−1

=

 F11
t F12

F11
t−F22

t

F11−F22
F13

F11
t−F33

t

F11−F33
+ a

0 F22
t F23

F22
t−F33

t

F22−F33

0 0 F33
t

 ,
where for typographical convenience we have introduced
the notation

a =
F12F23F11

t

(F11 − F22)(F11 − F33)

+
F12F23F22

t

(F22 − F11)(F22 − F33)

+
F12F23F33

t

(F33 − F11)(F33 − F22)
.

The reader can verify that this matrix equals I when t = 0
and F when t = 1.

Appendix D. Powers and roots

Let F be a positive-eigenvalue matrix, or indeed any
matrix for which the principal logarithm lnF is defined.
For any real number t, define the matrix power F t by

F t = exp(t lnF ).

It is easily seen to satisfy these properties:

• For any integer k, F k agrees with its usual definition
as the repeated product of F with itself k times.

• t lnF = ln(F t).

• F tF s = F t+s.

• (F t)
s

= F ts.

• d
dtF

t = (lnF )F t = F t(lnF ).

For any positive integer n, we can define the (principal)
nth root of F as

n
√
F = F 1/n = exp

(
1

n
lnF

)
.

It satisfies
(
n
√
F
)n

= F , but it is not the only matrix

whose nth power is F . For example, the 2 × 2 identity
matrix I has at least four square roots, because[

±1 0
0 ±1

]2
=

[
1 0
0 1

]
,

but the principal square root is
√
I = I.

Matrix powers are computed in Mathematica and Maple
by MatrixPower and in MATLAB using the syntax F^t

(see also sqrtm and funm).

Appendix E. Miscellaneous calculations

In this section, we compute two expressions for the kine-
matic vorticity Wk (Section 4.9) that do not commonly
appear in the structural geology literature. Both compu-
tations require this fact from linear algebra: For any (real,
3× 3) matrix A with eigenvalues α1, α2, α3,

trA2 = α1
2 + α2

2 + α3
2.

To see this, let A = PJP−1 be the complex Jordan de-
composition of A (see Appendix A). Then J is upper-
triangular with diagonal entries α1, α2, α3, and so

trA2 = trPJ2P−1 = tr J2

= α1
2 + α2

2 + α3
2.

We also need the Frobenius norm |A| of A, which is defined
as

|A| =
√

trA>A =

√√√√ 3∑
i=1

3∑
j=1

Aij
2.

The kinematic vorticity is commonly (e.g., Means et al.,
1980; Xypolias, 2010) defined as

Wk =
w√

2(s12 + s22 + s32)
,

where the si are the eigenvalues of the stretching tensor
S. From this definition and the definition of the vorticity
w (Section 4.8) it follows that

W 2
k =

2
(
W32

2 +W13
2 +W21

2
)

s12 + s22 + s32
.
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The numerator equals |W |2, while the denominator equals
trS2 = trS>S = |S|2. Thus W 2

k = |W |2/|S|2 and Wk =
|W |/|S|, as claimed in Section 4.9.

The identity W 2
k = |W |2/|S|2 also implies that

Wk =

√
1− 1 +

|W |2
|S|2

=

√
1− |S|

2 − |W |2
|S|2

.

Using L = S + W , S> = S, and W> = −W , it is not
difficult to show that

trL2 = trS2 + trSW + trWS + trW 2

= trS>S − trW>W

= |S|2 − |W |2.

But trL2 = λ1
2 + λ2

2 + λ3
2, where the λi are the eigen-

values of L. Combining these facts, we have

Wk =

√
1− λ1

2 + λ2
2 + λ3

2

|S|2
,

as claimed in Section 4.9.
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