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Abstract

The dynamic theory of deformable ellipsoidal inclusions in slow viscous flows was worked out by J.D. Eshelby in the 1950s,
and further developed and applied by various authors. We describe three approaches to computing Eshelby’s ellipsoid
dynamics and other homogeneous deformations. The most sophisticated of our methods uses differential-geometric
techniques on Lie groups. This Lie group method is faster and more precise than earlier methods, and perfectly preserves
certain geometric properties of the ellipsoids, including volume. We apply our method to the analysis of naturally
deformed clasts from the Gem Lake shear zone in the Sierra Nevada mountains of California, USA. This application
demonstrates how, given three-dimensional strain data, we can solve simultaneously for best-fit bulk kinematics of the
shear zone, as well as relative viscosities of clasts and matrix rocks.
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1. Introduction

Geologists often use elliptical and ellipsoidal markers to
characterize strain and infer rheology. Depending on the
structural or tectonic context, the ratio r between a clast’s
viscosity and the host rock’s viscosity may vary widely.
Passive markers, where r = 1, are perhaps the most thor-
oughly understood case (e.g., Ramsay, 1967; Dunnet, 1969;
Elliott, 1970; Matthews et al., 1974; Lisle, 1977). Ex-
amples include reduction spots (e.g., Tullis and Wood,
1975) and ooids (e.g., Cloos, 1947, 1971). Rigid clasts,
where r =∞, are another important special case. Jeffery
(1922) developed a dynamic theory of rigid ellipsoid ro-
tation, which has been applied extensively (Gay, 1968a,b;
Ghosh and Ramberg, 1976; Passchier, 1987; De Paor, 1988;
Jezek et al., 1996; Simpson and De Paor, 1997; Jessup
et al., 2007). Voids, where r = 0, represent the other
end-member case. Voids have been used in volcanology
to study the kinematics of flowing lavas (e.g., Rust et al.,
2003) and to estimate magma viscosity (e.g., Manga et al.,
1998).

However, ellipsoidal markers in rocks are not always
well-modeled by these three idealized special cases. Com-
petent clasts may exhibit viscosity ratios 1 < r <∞, and
incompetent clasts may exhibit 0 < r < 1 (Fig. 1). A
dynamic theory of deformable ellipsoids in slow viscous
flows was developed by Eshelby (1957, 1959) and Bilby
et al. (1975). This theory handles all viscosity ratios, in-
cluding the special cases of passive, rigid, and void ellip-

soids. The theory has been extended with new compu-
tational approaches (Freeman, 1987; Schmid and Podlad-
chikov, 2003; Mulchrone and Walsh, 2006; Jiang, 2007a),
and modified to handle interacting clasts (Mandal et al.,
2003), different clast or matrix properties (e.g., Fletcher,
2004, 2009; Dabrowski and Schmid, 2011; Mancktelow,
2011), and other clast shapes (Treagus and Treagus, 2001;
Treagus, 2002).

In this paper, we present new approaches to computing
Eshelby’s deforming ellipsoids. Our main method relies on
a mathematical structure called a Lie group (see, e.g., Be-
linfante and Kolman, 1972; Gilmore, 1974; Curtis, 1984;
Hall, 2003; Pollatsek, 2009), explained in more detail in
Section 3.3. Like earlier methods, our method produces
a numerical approximation to the deformation of the el-
lipsoids, but with three advantages. First, the method
automatically preserves desirable characteristics of the el-
lipsoids, such as their volumes and basic ellipsoidal shape.
Second, the method applies not just to Eshelby’s ellipsoids,
but to all non-steady homogeneous deformations. Third,
the method is faster and more precise than earlier meth-
ods. Such speed is of practical value to geologists, because
the analysis of naturally deformed rocks may require the
simulation of many ellipsoid deformations. As an exam-
ple application, we inverse-model deformed clast data from
the Gem Lake shear zone in the Sierra Nevada mountains
of California, USA (Section 5). This application demon-
strates how, given three-dimensional strain data, we can
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Figure 1: The spectrum of possible ellipsoid problems, organized by viscosity ratio r.
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Figure  3;  Davis  et  al.

Figure 2: Two coordinate systems are employed. The x coordinates
are fixed. The x̃ coordinates are aligned with the axes of the ellipsoid,
and rotate over time.

solve simultaneously for best-fit bulk kinematics of the
shear zone as well as viscosity ratios of several clast types.
We compare our results with those from a previously pub-
lished study that relied on traditional strain modeling.

2. Mathematical framework

Consider a rock that contains a single ellipsoidally
shaped inclusion of a different viscosity. We subject the
rock to a volume-preserving homogeneous deformation. As
the matrix rock deforms, the inclusion deforms differently
due to the viscosity contrast. We assume that both the
matrix and the inclusion materials remain homogeneous,
isotropic, and of constant viscosity at all times.

In coordinates x = [x1 x2 x3]> centered on the inclu-
sion (Fig. 2), the velocity ẋ at each point in the host rock
is linearly related to the position vector x at that point by
a velocity gradient tensor L:

ẋ = Lx. (1)

We are denoting by L both the tensor and its matrix rep-
resentation in the x coordinates. For simplicity of presen-
tation, we assume that the deformation is steady, so that
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Figure  2;  Davis  et  al.

Figure 3: The ellipsoid tensor E should have only positive eigenval-
ues. Numerical errors can cause the eigenvalues to drift, sometimes
even producing an unphysical shape such as a hyperboloid.

L is constant. The techniques of this paper could be ex-
tended to time-dependent L easily. Because the flow pre-
serves volume, tr L = 0. There are no other assumptions
or restrictions on L.

At any given time, the boundary ellipsoid of the inclu-
sion can be described by a tensor E (e.g., Flinn, 1979), in
that the ellipsoid is the set of points x such that

x>Ex = 1. (2)

Mathematically, E is a symmetric, positive-definite (0, 2)-
tensor. Symmetry and positive-definiteness mean that
Eq. (2) defines an ellipsoid, rather than a hyperboloid
or other unphysical shape, and that E diagonalizes as
E = Q>ẼQ, where Q is a rotation matrix,

Ẽ =

 a−21 0 0
0 a−22 0
0 0 a−23

 , (3)

and the ai > 0 (Fig. 3). The rows of Q are unit vectors
(in x coordinates) indicating the directions of the ellipsoid
semi-axes in a right-handed manner, and the ai are the
semi-axis lengths. The matrix Ẽ is the tensor E rendered
in a coordinate system x̃ = [x̃1 x̃2 x̃3]> aligned with the
ellipsoid’s axes (Fig. 2). When two of the semi-axis lengths
ai and aj are equal, there is an apparent ambiguity in
choosing the x̃ coordinates, or equivalently Q. However,
there is a unique correct way to resolve this ambiguity
(see Jiang (2007a) and Appendix B). The volume of the
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Under the assumption of slow viscous flow, Eshelby
(1957) and Bilby et al. (1975) showed that, if the inclusion
is an ellipsoid, then its deformation is also homogeneous.
That is, for all x inside the inclusion and along its bound-
ary,

ẋ = Kx, (4)

for some velocity gradient tensor K (viewed as a matrix,
in the x coordinates). The dynamics of the ellipsoid are
most easily described in the x̃ coordinates (Appendix A).
As the ellipsoid deforms, det E and the ellipsoid volume
remain constant, but K continually changes. Thus Es-
helby’s theory is an example of a non-steady homogeneous
deformation. In contrast to the steady homogeneous case
(Provost et al., 2004; Davis and Titus, 2011), the differ-
ential equation that governs the non-steady case (Eq. (4))
admits no closed-form solution. One must resort to an
iterative algorithm that produces a numerical approxima-
tion to the deformation. An inherent trade-off exists be-
tween the precision of the simulation and the computa-
tional time required. Imprecision causes the ellipsoid to
drift away from its true size, shape, and orientation. In
some cases, imprecision may lead to a catastrophic fail-
ure, such as an ellipsoid that degenerates to a cylinder or
hyperboloid (Fig. 3). The issue is that, while all ellip-
soids are represented by tensors, not all tensors represent
ellipsoids. Arithmetic operations on ellipsoid tensors can
produce tensors that are not physically meaningful. We
describe this phenomenon in detail in the next section.

In summary, K describes the flow inside the ellipsoid,
and L describes the flow at points distant from the ellip-
soid. Eshelby (1959) describes the flow at intermediate
points, but we do not require that part of the theory.

3. Simulation of deformable ellipsoids

3.1. Simulating the size and orientation separately
((Q, ai) method)

It is common in the geological literature (e.g., Freeman,
1987; Jiang, 2007a, 2012) to simulate the semi-axis lengths
a1, a2, a3 and orientation Q of the deforming ellipsoid sepa-
rately. That is, each of these four quantities is governed by
its own differential equation, although the four equations
are strongly coupled. For example, let C̃ be the stretching
tensor of the inclusion’s deformation, expressed in x̃ co-
ordinates, and W and W̃ the vorticity tensor of the host
rock deformation, expressed in x and x̃ coordinates re-
spectively. Appendix A gives explicit expressions for these
quantities in terms of Q and the ai. By Eqs. (A.16) and
(A.17),

ȧi = fi(Q, a1, a2, a3),

Q̇ = g(Q, a1, a2, a3),

t
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Figure  5;  Davis  et  al.
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Figure 4: Cartoon of the Euler and Runge-Kutta methods. Both
methods approximate the solution to a differential equation using
a sequence of discrete, steady steps. The latter method typically
produces less error.

where fi(Q, a1, a2, a3) = aiC̃ii and g(Q, a1, a2, a3) =
W̃Q − QW. We can solve these differential equations
using the classic Euler method, Runge-Kutta method, etc.
(e.g., Gerald and Wheatley, 1984; Burden and Faires, 2001;
Chapra and Canale, 2002), to obtain a numerical approx-
imation to the evolution of Q and the ai over time. We
briefly review these methods now.

The key idea of the Euler method is to divide the defor-
mation time into subintervals, and to approximate Q̇ and
the ȧi as constant over each subinterval. Geometrically,
the true solution of the differential equation is a curved
path, which the Euler method approximates by a sequence
of straight line segments (Fig. 4). To make this idea pre-
cise, suppose that time t runs from 0 to 1, and divide the
time interval [0, 1] into n steps, each of length h = 1/n. For
s = 0, 1, . . . , n, we compute approximations Qs ≈ Q(sh)
and ai,s ≈ ai(sh) to Q and ai at time t = s/n = sh. That
is, Q0 = Q(0) is the initial orientation, Qn ≈ Q(1) is the
final orientation, and similarly for the ai. Starting from
an initial ellipsoid E0 = E(0), compute Q0 and the ai,0.
Then apply the iteration formulas

ai,s+1 = ai,s + hfi(Qs, a1,s, a2,s, a3,s)

Qs+1 = Qs + hg(Qs, a1,s, a2,s, a3,s)

to obtain Q1, a1,1, a2,1, a3,1, and then Q2, a1,2, a2,2, a3,2,
and so on, up to the final values Qn, a1,n, a2,n, a3,n.

For the sake of brevity, let y = (Q, a1, a2, a3) and
f = (g, f1, f2, f3). In this simpler notation, the differential
equations are ẏ = f(y), and the Euler method iteration
formulas are ys+1 = ys + hf(ys).
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The Euler method generalizes to the higher-order
Runge-Kutta methods (Appendix D). Like the Euler
method, a Runge-Kutta method approximates the solu-
tion of the differential equation as a sequence of line seg-
ments (Fig. 4). However, a Runge-Kutta method eval-
uates the derivative ẏ (that is, the function f) several
times per step, to better aim this line segment, so that
it ends closer to the true solution. Concretely, the clas-
sic fourth-order Runge-Kutta method proceeds as follows,
given ys = (Qs, a1,s, a2,s, a3,s):

1. Let k1 = f(ys).

2. Let k2 = f(ys + h
2k1).

3. Let k3 = f(ys + h
2k2).

4. Let k4 = f(ys + hk3).

5. Then ys+1 = ys + h
6 (k1 + 2k2 + 2k3 + k4).

Any numerical approximation method for solving differ-
ential equations is subject to error. However, some errors
are worse than others, because they drastically affect the
geometry of the problem. For example, let

L =

 4 0 0
0 0 0
0 0 −4

 ,
let E0 be a sphere of radius one, and let r = 1. After
the first step of the Euler method with n = 3 steps (so
h = 0.33), the semiaxis lengths are 2.33, 1, and −0.33. The
ellipsoid has degenerated to a hyperboloid, as in Fig. 3.
Admittedly, this example is extreme, in that L represents
a high rate of strain and the step count n is low. A smaller
L or a smaller step size might at least preserve the clast
as an ellipsoid. On the other hand, the chosen viscosity
ratio r is not extreme, and we have not introduced the
complication of non-coaxial deformation. It is not clear
how small of a step size is needed to keep the clast an
ellipsoid, and the necessary step size may vary over the
course of the simulation. Even if the clast remains an el-
lipsoid, its shape and volume may deviate wildly from their
true values (Section 3.4). The orientation Q also accumu-
lates error, such that Q deviates from being a rotation
and Q>ẼQ is no longer the diagonalization of E. More
detailed performance analysis is given in Section 3.4.

The spheroid case, where two of the ellipsoid semi-axis
lengths ai and aj are equal, is noteworthy. The typi-

cal expression (Eq. (A.20)) for W̃ij becomes undefined.
Jiang (2007a, 2012) handles this case by declaring that
(Q̇Q>)ij = 0, or equivalently that W̃ij = (QWQ>)ij . In
Appendix C we handle this case differently, by comput-
ing a limit. (See Mulchrone (2007) for a similar argument
in two dimensions.) Of course, a random triaxial ellipsoid
will deform into a spheroid only rarely. On the other hand,
in an analysis of naturally deformed rock, one may wish
to model the deformation of ellipsoids that are assumed
to begin as spheres, where a1 = a2 = a3. Such a simula-
tion could be dramatically affected by the handling of the
spheroid case.

3.2. Simulating the ellipsoid tensor (E method)

In this section, we again use classic numerical meth-
ods to simulate the deforming ellipsoid. However, this ap-
proach simulates the ellipsoid tensor E rather than treat-
ing the orientation and size separately. The governing dif-
ferential equation is Eq. (A.15):

Ė = f(E),

where f(E) = −K>E−EK is computable using Appendix
A. By replacing y with E in the preceding section, we
obtain Euler and Runge-Kutta methods for evolving E.

In the previous section, we note that simulating Q and
the ai can cause significant errors in geometry. Analogous
issues crop up in simulating E. Namely, we wish E to
remain symmetric, positive-definite, and determinant-one
(assuming that det E0 = 1) at all times. By transposing
Eq. (A.15), it is easy to see that Ė is symmetric. It follows
that the Euler and Runge-Kutta methods just described
do preserve the symmetry of E. On the other hand, they
do not preserve positive-definiteness or determinant. Re-
peating the example of the previous section results in a
hyperboloid after one step of this Euler method. So this
approach to simulating the deforming ellipsoid is also un-
reliable for low step counts.

This E method enjoys two small advantages over the
(Q, ai) method. It does not require special handling of
the spheroid case (Appendix C). Computer experiments
also suggest that this approach slightly outperforms the
(Q, ai) method (Section 3.4).

3.3. Simulating the finite deformation (F−1 method)

The differential equation, Eq. (4), that governs the de-
formation of the ellipsoidal clast results in a homogeneous
finite deformation: At any given time t, the cumulative
effect up to that time can be represented as a finite de-
formation tensor (position gradient tensor) F(t) such that
x(t) = F(t)x(0) for all points x. More briefly, we write
x = Fx(0). Combining this equation with Eq. (2), we
have

x(0)>E(0) x(0) = 1 = x(0)>F>EF x(0).

Because this equation holds for all points x on the ellip-
soidal boundary, it follows that

E = (F−1)>E(0)F−1. (5)

This equation suggests that we can simulate E by simulat-
ing F or F−1 and computing E from F−1. It is well known
that

Ḟ = KF (6)

(see Bown (1989, p. 261), Pollard and Fletcher (2005, p.
178), etc.). We could apply the Euler method or Runge-
Kutta method to this differential equation, to evolve F
and thus E. However, we do not pursue that approach.
Instead, we recognize that F and F−1 are curves in the
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Lie group of volume-preserving homogeneous finite defor-
mations, and we apply Lie group numerical methods. For
clarity of exposition, we develop this strategy in several
stages.

Suppose for the moment that K is not time-dependent.
That is, the ellipsoid’s deformation is steady. Then
F(t) = exp tK, where exp is the matrix exponential func-
tion (Provost et al., 2004; Davis and Titus, 2011). Equiv-
alently, F−1 = exp−tK. Thus

E = (exp−tK)>E(0) (exp−tK). (7)

This equation is a new method for simulating the deform-
ing ellipsoid. Unlike the approaches of Sections 3.1 and
3.2, this method does preserve the key geometric proper-
ties of E at all times t. First, transposing Eq. (7) shows
that E is symmetric. Second, the determinant is

det E = det(exp−tK)> det E(0) det(exp−tK)

= (det exp−tK)2 det E(0).

Because det exp M = exp tr M for all matrices M,

det E = (etr−tK)2 det E(0) = (e−t trK)2 det E(0).

However, K has trace zero, because the deformation is
volume-preserving (Appendix A). Thus det E = det E(0).
The constancy of the determinant implies that the ellip-
soid’s volume is preserved, and that E never has zero as
an eigenvalue. Finally, the eigenvalues of E are always
real, because E is always symmetric. They depend contin-
uously on E, which depends continuously on t. They are
positive at t = 0 and they are never zero. Thus they must
be positive at all times t.

The foregoing description assumes that the ellipsoid de-
formation is steady, which is not realistic. However, as we
discuss in Section 3.1, the key idea of the Euler method is
to solve a non-steady differential equation by taking such
steady steps. So let us again use time steps of size h = 1/n,
and compute approximations Es ≈ E(sh) to the ellipsoid
at time t = sh. Let Ks denote the velocity gradient tensor
K computed from Es. Running Eq. (7) for one time step
yields

Es+1 = (exp−hKs)
>Es(exp−hKs).

This formula is an Euler method for E, distinct from that
of Section 3.2. Because each step of this new method pre-
serves the geometric properties of E, so does the entire
method. That is, the final ellipsoid tensor En ≈ E(1) is
guaranteed to be symmetric, positive-definite, and of the
same volume as the initial ellipsoid E0 = E(0).

The corresponding Runge-Kutta method for E is not
obvious. To derive it, we first use Eq. (5) to rewrite the
Euler method as

(F−1s+1)>E(0)F−1s+1

= (exp−hKs)
>(F−1s )>E(0)F−1s (exp−hKs),

where Fs is an approximation to F(sh). This equation is
equivalent to

F−1s+1 = F−1s exp−hKs, (8)

which is an Euler method for the inverse cumulative finite
deformation F−1. Notice that, if Fs has determinant one,
then so does Fs+1, because Ks has trace zero. Each step
of this Euler method preserves the most basic geometric
property of F: its volume preservation.

The fact that these methods respect the geometry of
the deformation is no accident. It is a symptom of an
underlying mathematical structure called Lie theory (see,
e.g., Belinfante and Kolman, 1972; Gilmore, 1974; Curtis,
1984; Hall, 2003; Pollatsek, 2009). In any rock deforma-
tion problem, the set of finite deformations forms a Lie
group, the set of instantaneous deformations forms the as-
sociated Lie algebra, and an exponential function maps the
latter into the former. In the context of homogeneous de-
formations, the Lie group is the set of position gradient
tensors (finite deformation tensors), the Lie algebra is the
set of velocity gradient tensors, and the exponential is the
matrix exponential.

If we restrict our attention to volume-preserving homo-
geneous deformations, then the Lie group is the special lin-
ear group, denoted SL(3,R), which is the set of all (real,
3 × 3) matrices of determinant one. The Lie algebra, de-
noted sl(3,R), is the set of all matrices of trace zero. The
Lie group is a curved, eight-dimensional hypersurface in
the nine-dimensional Euclidean space of all 3× 3 matrices
(Fig. 5). The classical Euler and Runge-Kutta methods on
matrices travel along straight lines in the Euclidean space,
and hence cannot stay in the curved Lie group. In contrast,
the Euler method of Eq. (8) travels along certain geodesic
curves in the Lie group. It is a natural generalization of the
Euclidean Euler method to a curved setting. Although it
suffers from some error, like any approximation, its error
is entirely within the set of physically relevant deforma-
tion tensors. Consequently, when we simulate E in terms
of F−1 using Eq. (8), our results are guaranteed to satisfy
our basic physical expectations.

We do not attempt to summarize Lie theory here. For
our purposes, it is enough simply to recognize the evolu-
tion of F or F−1 as a differential equation on a Lie group,
so that we can apply Lie group numerical methods. We
follow the fourth-order Runge-Kutta method described by
Munthe-Kaas (1998) and summarized in Appendix D. The
method uses the bracket operation, which for any two ma-
trices M and N is defined as [M,N] = MN−NM. Denote
by f (M) the function that takes a matrix M as input,
computes E = M>E(0)M, and then computes −K from
E using Appendix A. Here is the Runge-Kutta method
over a single time step of size h = 1/n.

1. Let k1 = f
(
F−1s

)
.

2. Let k2 = f
(
F−1s exp h

2k1
)
.

3. Let k3 = f
(
F−1s exp

(
h
2k2 + h2

24 [k1, k2]
))

.
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Figure 5: Cartoon of computing a deformation path in a Lie group. A solution using classic numerical methods on matrices departs from the
group, while a solution using Lie group methods remains in the group at all times. The Lie group methods can be viewed as classic methods
operating on the Lie algebra (Munthe-Kaas, 1999).

4. Let k4 = f
(
F−1s exp

(
hk3 + h2

6 [k1, k3]
))

.

5. Let v = h
6 (k1 + 2k2 + 2k3 + k4).

6. Let w = h
24 (3k1 + 2k2 + 2k3 − k4).

7. Then

F−1s+1 = F−1s exp (v + [w, v]) . (9)

To gain some intuition for this algorithm, pretend for the
moment that matrix multiplication is commutative. Then
all of the bracket terms are zero, and w is unnecessary. If
we strike these parts of the algorithm, then what remains
closely resembles the Euclidean Runge-Kutta method pre-
sented in Section 3.1. However, whereas each part of that
method resembles the Euclidean Euler method, each part
of the Lie group Runge-Kutta method resembles the Lie
group Euler method (Eq. (8)). So, intuitively, the Lie
group Runge-Kutta method is analogous to the Euclidean
Runge-Kutta method, but with corrections for the curva-
ture and the non-commutativity of the Lie group.

Here is our final method for simulating the deforming
ellipsoid, stated explicitly. We begin with E0 = E(0) and
F−10 = I, the identity tensor. For s = 1, . . . , n, we compute
F−1s using the Lie group Runge-Kutta method. Then we
compute (F−1n )>E(0)F−1n = En ≈ E(1).

3.4. Performance comparisons

We have discussed three basic strategies for numerically
solving the deforming ellipsoid problem: a (Q, ai) method
(Section 3.1), an E method (Section 3.2), and a Lie group
F−1 method (Section 3.3). For each strategy we have de-
scribed an Euler method and a fourth-order Runge-Kutta
method, so we have six methods in all. In this section we
report the results of computer tests on randomly generated
instances of the problem. We compare the six methods in
terms of speed, overall precision, and precision in preserv-
ing volume.

For each test, we randomly generate an instance
(E,L, r) of the problem, by choosing an orientation Q,
choosing 0.25 ≤ a1, a2 ≤ 4, setting a3 = (a1a2)−1, choos-
ing −2 ≤ Lij ≤ 2, and choosing 0.1 ≤ r ≤ 100 such that

(Q, ai) E F−1

Euler 0.0106 0.0106 0.0107
Runge-Kutta 0.0452 0.0472 0.0455

Table 1: Average computer processor time per step, in seconds, for
the six deformable ellipsoid methods.

log10 r is uniform. We compute three approximately equal
answers for the final ellipsoid E(1), by running the three
Runge-Kutta methods with increasing step count n until
their answers disagree by no more than 10−5. For speed
and simplicity we measure the distance between any two
ellipsoid tensors E and E′ using the Frobenius norm of
their difference:

|E−E′| =
√

tr(E−E′)>(E−E′).

(Appendix E describes another way to measure distance,
that handles the curved geometry of the problem more
precisely.) Then we run each of the six methods repeat-
edly, with increasing step count n. For each n, we record
the computer processor time required to compute E(1),
the distance from that E(1) to the nearest precomputed
correct answer, and the determinant of that E(1).

We have run 375 such tests. For each method, Table 1
shows the average computer processor time required per
step. We have attempted to control for various sources
of noise and bias in these timing data. The six methods
are implemented in the same language and library (Math-
ematica), at similar levels of abstraction and optimization.
As the table shows, the Euler methods all require approx-
imately equal time per step, and so do the Runge-Kutta
methods. The Runge-Kutta methods require about four
or five times as much time per step as the Euler methods.
We expect these patterns to hold for other implementa-
tions, at least approximately, with the specific numbers
varying by implementation. Henceforth, we state all de-
formable ellipsoid test results in terms of step count rather
than time.

Fig. 6 summarizes the performance of all six methods,
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Figure 6: Median error of all six methods for the deformable ellipsoid.

by showing, for each step count n, the median error in our
375 tests. This graph can be read in two ways: the pre-
cision attainable in a given step count, or the step count
required to achieve a given precision. The Runge-Kutta
methods perform distinctly better than the Euler meth-
ods, even if we account for the Euler methods’ requiring
one fourth the processor time per step. This situation is
typical of Euler and Runge-Kutta methods (e.g., Gerald
and Wheatley, 1984, p. 308), and justifies the increased
programming difficulty of the latter. Henceforth we focus
on the Runge-Kutta methods.

It is also clear from Fig. 6 that the Lie group F−1 ap-
proach significantly outperforms the (Q, ai) and the E ap-
proaches. Fig. 7 compares the performance of these three
Runge-Kutta methods in greater detail. For each n, the
two panels show the errors of the (Q, ai) and E methods
divided by the error of the F−1 method. For n = 20, for
example, the E method produces at worst about 100 times
the error of the F−1 method, while the (Q, ai) method
produces at worst about 10,000 times the error of the F−1

method. Whether to achieve a given precision in the short-
est possible time or to achieve the highest possible preci-
sion in a given time, the F−1 method is preferable to the
other methods.

Fig. 8 shows the worst-case volume-preservation behav-
ior of the three Runge-Kutta methods, by showing their
maximum and minimum computed values for the deter-
minant of E, in our 375 tests. The determinant should
always be one. The (Q, ai) and E Runge-Kutta meth-
ods may deviate far from one at low step counts n, but
do not deviate significantly from one after about n = 20.
The F−1 Runge-Kutta method preserves the determinant
exactly, even at low step counts.

4. Simulation of rigid ellipsoids

As the viscosity contrast r goes to infinity, the de-
formable ellipsoid model reproduces the rigid ellipsoid
model of Jeffery (1922) (Freeman, 1987; Jiang, 2007b).
We compute this limiting case in Appendix A. In short,
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Figure 7: The error of (A) the (Q, ai) Runge-Kutta method and
(B) the E Runge-Kutta method, relative to the F−1 error. The five
curves indicate percentiles in the 375 tests.

Figure  9;  Davis  et  al.
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Figure 8: Worst-case determinants of the deformable ellipsoid tensor
E.

the stretching component of deformation vanishes, and the
vorticity component simplifies. In this section, we describe
and compare two approaches for simulating the rotation of
these rigid ellipsoids.

The first approach is simply that of Section 3.1, specif-
ically Eq. (A.17). Recall that this approach evolves Q as
a 3 × 3 matrix, using Euclidean numerical methods. As
one would expect, Eq. (A.16), which governs the evolution
of the ai, reduces to ȧi = 0. Although the special case
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Euclidean Lie
Euler 0.000134 0.000171

Runge-Kutta 0.000553 0.000759

Table 2: Computer processor time per step, in seconds, for the four
rigid ellipsoid methods.

ai = aj is problematic in this approach (Eq. (A.21)), the
problem vanishes as r →∞ (Eq. (A.24)).

The second approach treats Q as an element of a Lie
group, in a manner analogous to Section 3.3. The Lie
group in question is no longer the volume-preserving ho-
mogeneous deformations SL(3,R). It is now the smaller
group SO(3), consisting of finite rotations — matrices R
such that RR> = I and det R = 1. The Lie algebra is
no longer sl(3,R) but rather the smaller Lie algebra so(3)
consisting of instantaneous rotations — matrices Ω such
that Ω> = −Ω. The matrix exponential sends so(3) to
SO(3).

Here is the Lie group approach in detail. The diagonal-
ization E = Q>ẼQ, combined with Eq. (5), yields

Q>s ẼQs = (F−1s )>Q>0 ẼQ0F
−1
s .

It follows that Qs = Q0F
−1
s . Then, using the Lie group

Euler method for F−1 (Eq. (8)), we obtain

Qs+1 = Q0F
−1
s+1 = Q0F

−1
s exp−hKs = Qs exp−hKs.

This is the Euler method for Q. It is of the same form
as Eq. (8), with Q filling the role of F−1. Replacing F−1

with Q in the Runge-Kutta method Eq. (9) yields the
corresponding Runge-Kutta method for Q. Either of these
methods, combined with E = Q>ẼQ, yields a Lie group
method for the rigid ellipsoid tensor E.

Thus, we have two approaches to simulating the rotation
of rigid ellipsoids, each in an Euler version and a Runge-
Kutta version, for four methods in all. In a testing pro-
cedure similar to that of Section 3.4, we have tested the
four methods on 2,500 randomly generated instances of
the rigid ellipsoid problem. Table 2 shows the computer
processor time required for one step of each of the four
methods. Although these timing data are implementation-
dependent, some patterns are noteworthy. As in the de-
formable case (Table 1), the Runge-Kutta methods re-
quire four or five times as much processor time per step as
the corresponding Euler methods. Unlike the deformable
methods, the rigid Lie group methods require about one-
third more time per step than their Euclidean counter-
parts. The extra time arises primarily from computing
brackets and exponentials.

Fig. 9(A) summarizes the performance of the four meth-
ods based on the step count n. As expected, the Runge-
Kutta methods outperform the Euler methods dramati-
cally. The Lie group Euler method significantly outper-
forms the Euclidean Euler method. On the other hand,
the Euclidean Runge-Kutta method matches or beats the
Lie gropu Runge-Kutta method, especially once processor
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Figure 9: (A) Median error of the four rigid methods. (B) Worst-case
error in the ellipsoid volume, for the two Runge-Kutta rigid methods.

time is taken into account. Fig. 9(B) shows the worst-
case volume-preservation behavior of the two Runge-Kutta
methods, by showing their maximum and minimum com-
puted values for det E, which should always be one, in
our 2,500 tests. As in the deformable case (Fig. 8), the
Lie group method never deviates from determinant one.
The Euclidean method does not deviate significantly from
determinant one if at least n = 5 steps are used.

In summary, one can apply Lie group methods to the
simulation of rigid ellipsoids as well as deformable ellip-
soids. However, Lie group methods do not appear to enjoy
any practical advantage over simpler, Euclidean methods
in the rigid case.

5. Application to the Gem Lake shear zone

As an application of our deformable ellipsoid techniques,
we reanalyze three-dimensional strain and fabric data of
Horsman et al. (2008) from the Gem Lake shear zone in
the Sierra Nevada mountains of California. Our goal is to
quantify the outcrop-scale deformation in the shear zone
based on the behavior of deformed ellipsoidal clasts. We
first describe the geologic setting, data, and model. Then,
we describe numerical experiments showing that our in-
verse modeling approach is feasible. Finally, we apply the
approach to the Gem Lake shear zone data.
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Figure 10: Cartoon of the Gem Lake shear zone modeling process.
Each of seven subproblems is represented by an arrow. We seek the
deformation that best fits all seven subproblems simultaneously.

5.1. Geologic setting and data

The Gem Lake shear zone is part of the dextral trans-
pressional Late Cretaceous Sierra Crest shear zone sys-
tem in the Sierra Nevada of California (Tikoff and Greene,
1997). In the vicinity of Gem Lake, the shear zone has a
strike and dip of about 150◦ and 78◦. The shear zone is
about 1 km wide, and it may have accommodated 20 km
or more of dextral offset (Greene and Schweickert, 1995).

Horsman et al. (2008) reported measurements of lin-
eation and foliation from volcaniclastic rocks and clast-
rich tuffs inside the shear zone, and from rocks outside the
shear zone. The lineation outside the shear zone pitches
steeply down dip, while inside the zone it pitches moder-
ately to the northwest. The rocks contain clasts (idealized
as ellipsoids) of felsic, intermediate, quartz, and pumice
composition. Horsman et al. (2008) reported measure-
ments, including both ellipsoid orientation and magnitude,
of each of these clast types, inside and outside the shear
zone.

5.2. Model

We assume that the large-scale shear zone deformation
was steady, homogeneous, and volume-preserving. Choose
time units so that this deformation runs from t = 0 to
t = 1, and let L be its as-yet-unknown velocity gradient
tensor. The rocks outside the shear zone may have been
deformed prior to the shear zone deformation. We assume
that the prior deformation was homogeneous and volume-
preserving. We seek the L and rock viscosity ratios that
best solve seven subproblems related to lineation and fo-
liation, and the three clast types within each of the two
host rock types (Fig. 10).

The first subproblem asks L to match the lineations and
foliations. We assume that those observed outside the
shear zone are aligned with the finite strain axes of the
prior deformation. Using Appendix E, we average the two
lineation-foliation pairs inside the shear zone into a sin-
gle lineation-foliation pair, which we assume to be aligned
with the finite strain axes of the sequential superposition

of the prior and shear zone deformations. Let E0 be the
ellipsoid tensor for the finite strain ellipsoid outside the
shear zone, and E1 the finite strain ellipsoid tensor inside
the shear zone. Then E1 = (exp−L)>E0(exp−L). (This
equation is the passive, steady case of Eq. (5).) Unfortu-
nately, we do not know the magnitudes of these ellipsoids,
but only their orientations. Working in fixed geographic
coordinates, let l0 and f0 be unit vectors aligned with the
lineation and foliation pole outside the shear zone, and
R0 the matrix whose rows are f0, l0 × f0, and l0. Let
b1 ≤ b2 ≤ b3 = (b1b2)−1 be the unknown finite strain axes
of the prior deformation, and

∆0 =

 b−21 0 0
0 b−22 0
0 0 b21b

2
2

 ,
so that E0 = R>0 ∆0R0. Similarly, form a matrix R1 from
the averaged lineation and foliation inside the shear zone,
so that E1 = R>1 ∆1R1 for an unknown ∆1. Then

∆1 = R1(exp−L)>R>0 ∆0R0(exp−L)R>1 .

That is, the deformation L matches the lineation and foli-
ation data R0,R1 if and only if b1 ≤ b2 ≤ (b1b2)−1 exist to
make the symmetric matrix ∆1 diagonal with decreasing
diagonal entries. This condition amounts to three scalar
equations and four inequalities on L and the bi.

The remaining six subproblems ask L to match the de-
formed clast data. Using Appendix E, the ellipsoids for
each combination of clast type and matrix rock type can
be averaged into a single ellipsoid. We assume that the
clasts outside and inside the shear zone represent a single
clast population before and after the shear zone deforma-
tion (Fig. 10). For example, the shear zone deformation
has deformed the felsic ellipsoid outside the shear zone to
the felsic-in-volcanoclastic ellipsoid, using some unknown
felsic/volcanoclastic viscosity ratio. Also, the deforma-
tion changed the felsic-outside ellipsoid to the felsic-in-tuff
ellipsoid using some unknown felsic/tuff viscosity ratio,
and similarly for the intermediate and quartz ellipsoids.
We ignore the pumice clast data, because Horsman et al.
(2008) suspect volume loss in those clasts, and our de-
forming ellipsoid model assumes volume preservation. For
any given L and set of viscosity ratios, we can simulate
these six deforming ellipsoids, using the Lie group F−1

method of Section 3.3. (We use n = 10 steps, for a step
size of h = 0.1.) The ellipsoids computed at t = 1 should
match the observed clast ellipsoids. Each of these six sub-
problems amounts to one equation of ellipsoid tensors, and
hence six scalar equations on L and the unknown viscosity
ratios.

In summary, the parameters of our model are the ve-
locity gradient tensor L, five unknown viscosities (felsic,
intermediate, quartz, volcanoclastic, and tuff), and two fi-
nite strain axis magnitudes b1 and b2. Because L is thus
far required only to preserve volume, it may have as many
as eight degrees of freedom, for a total of up to 15 de-
grees of freedom in the model. The model must satisfy 39
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highly nonlinear equations, as well as four inequalities for
the finite strain axis magnitudes. We can expect no exact
solution. However, using numerical optimization software
such as Mathematica, we can find a least-squares best-fit
solution, as in Davis and Titus (2011, Section 5.2). Ap-
pendix E explains one last detail: In each of the seven
subproblems that lead to the 39 equations, we compute
the error in the logarithms of the matrices, rather than the
matrices themselves. For example, we ask log ∆1, rather
than ∆1, to be diagonal.

Although this approach can be applied to any volume-
preserving L, transpression deformations are most relevant
to the geologic setting. The dip of the shear zone, and the
fact that the lineations are neither vertical nor horizontal,
suggests that monoclinic transpression is not an appropri-
ate model. Like Horsman et al. (2008), we model the shear
zone as an inclined transpression (Lin et al., 1998; Jones
et al., 2004; Davis and Titus, 2011):

L = S

 0 − cotα
cos δ log(1− s) 0

0 log(1− s) 0
0 − tan δ log(1− s) − log(1− s)

S>,

where

S =

 cosσ − sinσ 0
sinσ cosσ 0

0 0 1

 1 0 0
0 cos δ − sin δ
0 sin δ cos δ

 ,
the strike of the shear plane is −π/2 − σ, the dip of the
shear plane is π/2 − δ (in a right-handed sense), α is the
angle of oblique convergence, and 0 < s < 1 is the frac-
tional shortening across the shear zone (Fig. 11). Hence
there are four parameters in L and 11 parameters overall.

We impose various additional constraints on the param-
eters, to reflect the geometry of the Gem Lake shear zone.
The strike and dip of the shear plane are constrained be-
tween 145◦ and 155◦ and between 73◦ and 83◦, respec-
tively. The angle of oblique convergence is between 1◦ and
89◦, representing all possible dextral deformations, while
the shortening is between 0.1 and 0.9. The five viscosities
are assumed to be between 0.01 and 100. (The units on
these viscosities are not important, because only their ra-
tios enter into the problem.) Thus, we consider viscosity
ratios as small as 10−4 and as large as 104.

5.3. Numerical experiments

Before we apply this model to the Gem Lake shear zone
data, we describe two numerical experiments. Both ex-
periments use randomly generated, synthetic data sets, of
the same form as the Gem Lake shear zone data set. The
experiments demonstrate that our inverse modeling ap-
proach is capable of recovering the deformation from such
data, and give some idea of how variations in the data
affect the uncertainty of the best-fit model.

The first experiment consists of 107 tests. In each test,
we randomly generate a fictitious initial state and shear
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Figure 12: Box-and-whisker plots for the first numerical experiment.
(A) The difference between the true and predicted values for strike,
dip, angle of oblique convergence, and shortening. (B) The ratio
between the true and predicted viscosity ratios.

zone deformation. (The transpression parameters are cho-
sen uniformly from their constraint intervals. The ellip-
soid orientations are chosen uniformly, and their semi-
axis lengths are chosen between 0.33 and 3.0 such that
their logarithms are uniform. The clast viscosities are
chosen between 1 and 100, and the matrix viscosities be-
tween 0.01 and 1, such that their logarithms are uniform.)
We forward-model to obtain the resulting clast ellipsoids
and finite strain ellipsoid inside the shear zone. Then
we inverse-model the deformation and viscosities from the
data inside and outside the shear zone, exactly as described
in the preceding section. Finally, we compare the best-fit
parameter values from the inverse model to their true val-
ues chosen at the start of the test.

Fig. 12 shows box-and-whisker plots for the results of the
first experiment. Panel (A) shows the differences between
the true and the predicted values for the inclined trans-
pression parameters. The predicted values closely match
their true values, but there is more inaccuracy in the angle
of convergence and shortening, than in the strike and dip
of the shear plane. Panel (B) shows the ratios between the
true and predicted viscosity ratios. The model almost al-
ways recovers the viscosity ratios to within a factor of four.
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Figure 11: Diagram illustrating the kinematic model of inclined transpression used for the Gem Lake shear zone. There are four degrees of
freedom related to inclined transpression that we incorporate into our modeling: two come from the shear zone coordinate system (one for
strike, one for dip), one comes from the amount of convergence, and one comes from the angle of convergence. Modified from Jones et al.
(2004).

One particular test accounts for the most extreme inaccu-
racies in angle of oblique convergence, shortening, and sev-
eral of the viscosity ratios. We conclude that our inverse
modeling approach and numerical optimization software
are capable of recovering deformation from data like those
of Horsman et al. (2008).

The second experiment consists of 1,000 tests. In each
test, we randomly generate an initial state and deforma-
tion, and compute the final state from them, as in the
first experiment. The error squared of the deformation, in
matching the data, is of course zero. We perturb the ori-
entations of the 11 ellipsoids, by rotating each one through
5◦ about a random axis in space, and observe how the er-
ror squared of the deformation deviates from zero. We also
perturb the magnitudes of the clast ellipsoids, by raising
each semi-axis length to a power of (1.03)5. This pertur-
bation is designed to exaggerate the shapes of the clasts
by roughly 10%, while preserving their volumes. As we
perturb the magnitudes, we again observe how the error
squared of the deformation changes. Finally, we perturb
the orientations and magnitudes simultaneously, and ob-
serve how the error squared changes. We regard these 5◦

and/or 10% perturbations to be “small” variations in the
data. Probably, many field measurements of ellipsoids con-

tain this much error. We then repeat the entire process
with “large” variations in the data: 10◦ perturbations in
orientations and roughly 20% perturbations in clast mag-
nitudes.

In 95% of the small-variation results, the error squared
of the deformation does not exceed 3.37. In 95% of the
large-variation results, the error squared does not exceed
15.9.

5.4. Results

Now that we have demonstrated the feasibility of our
inverse-modeling approach, we apply this approach to the
Gem Lake shear zone data. Computing the best-fit in-
clined transpression requires about 180,000 simulations of
deformable ellipsoids, for about 17 hours of processor time
on our computer. The error squared of the best fit is 3.05.
This number has no physical meaning, but recall from Sec-
tion 5.3 that small variations in the data tend to produce
error squared up to 3.37, and large variations produce error
squared up to 15.9. The following figures include “pseudo-
confidence regions” based on those two values. We em-
phasize that these confidence regions are not statistically
rigorous. Further, they are constructed by letting a sin-
gle parameter vary, while other parameters are held fixed
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Constraint Best Fit Pseudo-CI
Strike 145◦-155◦ 155◦ 153◦-163◦

Dip 73◦-83◦ 83◦ 75◦-89◦

Ang. Obl. Conv. 1◦-89◦ 7◦ 4◦-10◦

Shortening 0.1-0.9 0.27 0.18-0.34
Felsic 0.01-100 58 30-142
Intermediate 0.01-100 43 25-90
Quartz 0.01-100 62 33-167
Volcaniclastic 0.01-100 8 4-14
Clast-Rich Tuff 0.01-100 14 8-23

Table 3: Model parameters: the imposed constraint, the best-fit
value, and the small-variation pseudo-confidence interval defined by
an error squared of 3.37.
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Figure  13;  Davis  et  al.

Figure 13: The effect of the inclined transpression parameters on the
model fitness. The contours show the error squared of the fit. The
pseudo-confidence regions defined by the values 3.37 and 15.9 are
shaded. (A) Strike and dip of the shear plane. (B) Angle of oblique
convergence and shortening.

to their best-fit values. So they describe the uncertainty
in the best-fit parameters incompletely at best. The con-
straints and best-fit values for the model parameters are
summarized in Table 3, along with small-variation pseudo-
confidence intervals derived from the figures.

Fig. 13 is one view of how the fitness of the model
varies around the best fit. Panel (A) shows contours of
error squared, as the strike and dip vary, with all other
parameters held fixed to their best-fit values. The low-
est error squared occurs near a strike of 158◦ and a dip
of 82◦. This point lies outside our strike and dip con-
straints, which explains why the best-fit optimization sat-
urates those constraints. Similarly, panel (B) shows con-

small  variation

pseudo-confidence  intervals  
large  variation

            
  fels

ic
          
  inte

rme
diate

          qu
artz

20

Clast  viscosity

E
rr
or
  s
qu
ar
ed

3.0
50 200 1000  

4.0

3.5

4.5

500100

4

6

8

9

7

5

3.37

0 20 4010 30

Viscosity  of  volcaniclastic  tuff

V
is
co
si
ty
  o
f  c
la
st
-r
ic
h  
tu
ff

0

10

20

40

30

A

B

Figure  14;  Davis  et  al.

Figure 14: The effect of the rock viscosity parameters on the fitness
of the model. The pseudo-confidence regions defined by the values
3.37 and 15.9 are shaded. (A) The error squared plotted against the
viscosities of the three clast types. (B) The viscosities of the two
matrix rocks, with contours showing the error squared.

tours of error squared as the angle of oblique convergence
and the shortening vary. Based on the small-variation
pseudo-confidence regions, this model predicts a shear zone
strike of 153◦-163◦ and dip of 75◦-89◦. The model predicts
an angle of oblique convergence of 4◦-10◦ and shortening
of 0.18-0.34.

The best-fit viscosities in Table 3 imply clast-matrix vis-
cosity ratios between 3 and 8. The small-variation pseudo-
confidence intervals consistently predict viscosity ratios
greater than 1. Fig. 14 explores the fitness of the model as
we vary the viscosities. In panel (A), each clast viscosity
is varied, while the other four viscosities (and other model
parameters) are held fixed to their best-fit values. The
pseudo-confidence regions span nearly one order of mag-
nitude. In panel (B), each matrix rock viscosity is var-
ied. Although the pseudo-confidence region for the matrix
viscosities is narrower than for the clast viscosities, the
analysis as a whole yields rather broad constraints on the
viscosity ratios.
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Clast Matrix Observed Predicted
Felsic Volc. 0.60, 1.05, 1.59 0.55, 0.91, 2.00
Felsic Tuff 0.49, 1.36, 1.48 0.50, 0.92, 2.20
Interm. Volc. 0.49, 0.96, 2.13 0.46, 1.18, 1.84
Interm. Tuff 0.36, 1.25, 2.20 0.40, 1.28, 1.98
Quartz Volc. 0.58, 1.12, 1.54 0.45, 1.08, 2.05
Quartz Tuff 0.34, 1.05, 2.79 0.40, 1.12, 2.22

Table 4: Semi-axis lengths for the deformable clasts: data observed
in the shear zone, and values predicted by the best-fit model.

Table 4 shows how the best-fit model matches the clast
magnitudes. In some cases, such as the intermediate-
composition clasts, the predicted semi-axis lengths are
close to the observed ones. In many cases, however, the
predicted lengths seem to be significant over- or under-
estimates of the observed values. Fig. 15 shows how the
model matches the orientational aspects of the data. In
panel (A), the lineation and foliation are matched to within
a few degrees. In panel (B), all of the predicted short axes
are quite close to their observations. In three of the cases,
the other two axes match their observations to within a few
degrees. In two other cases, the predictions are less close
to, but still consistent with, the observations. The worst
match seems to occur in the felsic-in-tuff case, where the
long and intermediate axes are switched. However, the ob-
served orientations of these axes may not be well-defined,
because their lengths are so similar (Table 4).

6. Discussion

6.1. Computational methods

In Section 3, we discuss three methods for simulating
the deformation of ellipsoidal clasts. We focus on the
(Q, ai) method because this kind of approach — evolving
the orientation and semi-axes of the ellipsoid separately
— dominates the geology literature on this problem (e.g.,
Freeman, 1987; Jiang, 2007a, 2012). We focus on the E
method because it is elegant. The ellipsoid tensor captures
orientation and magnitude in a single quantity, governed
by a fairly simple differential equation. We focus on the
Lie group F−1 method because it illustrates the role of
Lie theory in describing rock deformation, and because it
is the fastest method that we have tried.

This list of three methods is not meant to be exhaus-
tive. For example, we mention in Section 3.3 that one
could evolve F or F−1 using Euclidean methods, instead
of Lie group methods. For another example, it is easy to
adapt the (Q, ai) method to simulate the logarithms of the
semi-axes. If we let bi = log ai, then Eq. (A.16) becomes
ḃi = C̃ii, and a (Q, bi) method follows immediately. Also,
in this paper we have discussed only Euler and fourth-
order Runge-Kutta methods, for the sake of clarity. More
sophisticated methods exist in Euclidean spaces, includ-
ing higher-order and multi-step methods. Munthe-Kaas
(1999) and Faltinsen et al. (2001) develop some of these
methods on Lie groups.
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Figure 15: Equal-area, lower-hemisphere plots showing how the best-
fit model matches the orientational data. (A) The subproblem of
matching lineation and foliation. (B) The six deformable clast sub-
problems.

The main practical reason for contemplating various
methods is that some are faster than others. For example,
to achieve an error of 0.001 in the ellipsoid tensor, the Lie
group F−1 method requires only n = 4 steps, while the
Euclidean (Q, ai) method requires n = 36 steps (Fig. 6).
In our implementations, the processor time required by
the F−1 method is proportionally smaller, but implemen-
tations in a different language or library could produce
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different processor times.
Speed is of practical value to geologists because the anal-

ysis of naturally deformed rocks may require many ellip-
soid simulations. Computing the best-fit inclined trans-
pression for the Gem Lake shear zone requires around
180,000 simulations, or about one day of computation on
our computer. The analysis might require a week of com-
putation if it were based on the previously available meth-
ods. Fast methods allow us to explore a wide variety of
models.

The E and F−1 methods also offer secondary advan-
tages over the (Q, ai) method. Neither method requires
the computation of Q̇, which is difficult in the spheroid
case (Appendix C). The Lie group F−1 method always
preserves the volume of the ellipsoid (Fig. 8) and avoids
catastrophic failures of geometry (Fig. 3).

6.2. Application of the methods

In the application section of this paper, we use our Lie
group ellipsoid method to inverse-model the bulk defor-
mation and viscosity ratios in the Gem Lake shear zone.
Horsman et al. (2008) used different methods to estimate
similar parameters, including dextral offset. In this sec-
tion, we compare our results to theirs and others from the
literature.

For characterizing the bulk kinematics, Horsman et al.
(2008) fixed the strike (147◦) and dip (78◦ SW) of the shear
zone based on field fabrics, so these were not variables in
their modeling. This shear plane is not dissimilar from our
optimal value of 158◦/82◦ SW, and it lies within our large-
variation pseudo-confidence interval (Fig. 13). Horsman
et al. (2008) found an angle of oblique convergence of 5◦-
25◦ using a model of inclined transpression designed to
match strain values within the shear zone. That estimate
is consistent with our best-fit value of 7◦ and range of 4◦-
10◦. Also, their shortening values of 0.2-0.6 are consistent
with our best-fit value of 0.27 and range of 0.18-0.34. In
short, our estimates of deformation coincide with the lower
end of the estimates of Horsman et al. (2008).

Horsman et al. (2008) used cleavage orientations in the
two host rocks, coupled with a model of cleavage refrac-
tion in layered media (Treagus, 1983), to estimate relative
rock viscosities. Those authors concluded that the volcani-
clastic rock is more viscous than the clast-rich tuff, with
a viscosity ratio between 2 and 5. Our analysis predicts
the opposite relationship: a best-fit ratio of 0.57, with a
pseudo-confidence interval of 0.17 to 1.8 (Table 3). The
discrepancy between these results is not especially worri-
some. It is clear from Fig. 14 that, although our anal-
ysis estimates the viscosities of all five rock types, these
estimates are not tightly constrained. For example, the
quartz/volcaniclastic ratio may lie anywhere between 2
and 42.

Using the parameters from our best-fit inclined trans-
pression, we compute a total dextral offset of 3.1 km
across the Gem Lake shear zone. As the dip, angle

of oblique convergence, and shortening range over their
pseudo-confidence regions, the dextral offset varies be-
tween 1.2 km and 7.6 km. (This range is more conserva-
tive than that predicted by the pseudo-confidence region
in Fig. 13, because the most extreme combinations of val-
ues lie outside that region.) The tectonic-scale kinematic
analysis of Horsman et al. (2008) also resulted in an es-
timated offset of only a few kilometers across the shear
zone. These estimates broadly agree with the 1.2-8 km es-
timate for the Rosy Finch shear zone (Tikoff and Teyssier,
1992; Greene and Schweickert, 1995), which is the south-
west continuation of the Gem Lake shear zone.

The Gem Lake shear zone offset estimates are consid-
erably smaller than the 20 km or more hypothesized by
Greene and Schweickert (1995). That estimate was based
on matching marble slivers between two volcanic pendants.
Those authors note that the displacement could be consid-
erably smaller, if the two marbles were derived from dif-
ferent sources. If the offset were truly as large as 20 km,
then clast interaction might provide an explanation for our
smaller estimate. In a deforming rock with multiple clasts,
interactions among clasts can appreciably affect deforma-
tion, unless the clasts are separated by about four radii or
more (Mandal et al., 2003). The clasts in the Gem Lake
shear zone rocks are not tightly packed, but nor are they
consistently separated by four radii (Horsman et al., 2008,
Fig. 4). Thus, our model, in treating the clasts as isolated,
is overly simplified and not entirely realistic. Deformation
partitioning at multiple scales provides another possible
explanation for the discrepancy. For instance, our model
does not consider the possibility that deformation is parti-
tioned differently among the two matrix rocks in the shear
zone. Further, it is possible that deformation was accom-
modated outside of the narrow 1 km-wide region studied
near Gem Lake. Along most of its mapped length, the
shear zone includes multiple anastomosing strands (Greene
and Schweickert, 1995, Fig. 2). In the Gem Lake region,
only one strand has been recognized. Perhaps more de-
tailed mapping would demonstrate the existence of an-
other strand.

6.3. Implications

Lie groups enjoy a rich theory going back well over a
century (Hawkins, 2000). We believe that that this theory
can benefit geologists both conceptually, by supplying new
vocabulary for describing deformation, and practically, by
enabling new approaches to computation of deformation.
A Lie group may seem abstract or unnecessary at first.
However, it is actually more physical than the more famil-
iar space of all 3× 3 matrices, because it captures exactly
the volume-preserving deformations (or rigid rotations, in
Section 4) that are meaningful in the problem. This paper
improves upon our previous Lie theory application (Davis
and Titus, 2011) in several ways.

First, whereas the previous paper treated all steady ho-
mogeneous deformations, this paper applies to all homoge-
neous deformations, which are described by Eqs. (4) and
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(6). The deforming ellipsoid of Eshelby (1957) is actu-
ally just one example. For another example, consider any
homogeneous transpressional system. If the strike of the
shear zone, direction of motion, or speed of motion changes
during deformation, then the velocity gradient tensor L is
non-steady. There is no closed-form solution for the fi-
nite deformation F, but our methods for F and F−1 (Sec-
tion 3.3 and Appendix D) yield a numerical approximation
with high speed and precision. For a final example, con-
sider a deforming host rock that contains a roughly ellip-
soidal xenolith, which itself contains a smaller ellipsoidal
clast. This situation can be modeled as a nested Eshelby
problem. Appendix A lets us compute the velocity gra-
dient tensor in the xenolith from that in the host rock,
and the velocity gradient tensor in the clast from that in
the xenolith. The E and F−1 methods can then simulate
the deformation of all three rocks simultaneously. Simi-
lar problems have been studied by Mancktelow (2013) and
Jiang and Bentley (2012).

Second, our previous paper showed how to integrate a
variety of data types into the computation of a best-fit
steady model (Davis and Titus, 2011, Fig. 7). This paper
adds a new data type — deformed ellipsoidal clasts —
and gives an example where the orientation, but not the
magnitude, of the finite strain ellipsoid is known.

Third, our new techniques aid the computation of best-
fit non-steady models. For example, suppose that we have
data about the finite strain ellipsoid (FF>)−1 of a homo-
geneous finite deformation F. If we assume a constant ve-
locity gradient tensor L, then the data constrain L via the
equation (FF>)−1 = (exp L exp L>)−1. If L is not con-
stant, then that equation does not hold, but our numerical
methods for F−1 or F still let us compute (FF>)−1 from L
quickly and precisely. This computation is the fundamen-
tal step in fitting a non-steady L to finite strain ellipsoid
data.

Finally, whereas Davis and Titus (2011) presented its
best-fit models as unique and certain, this paper attempts
to describe the uncertainty in the best-fit parameters for
the Gem Lake shear zone, through the numerical exper-
iments of Section 5.3. Although the pseudo-confidence
regions that we construct are not statistically rigorous,
they provide useful constraints on the bulk deformation
(Fig. 13). The rigor of the analysis could be improved
through Markov chain Monte Carlo methods (e.g., Gre-
gory, 2005), for example. Like the numerical optimization
algorithm employed in this paper, a Markov chain Monte
Carlo approach would require many deforming ellipsoid
simulations. Fast methods for computing these simula-
tions are always valuable.
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Appendix A. Dynamics

The dynamics of the deformation of the ellipsoidal in-
clusion were worked out by Eshelby (1957, 1959) and Bilby
et al. (1975) and further developed by Bilby and Kol-
buszewski (1957); Freeman (1987); Jiang (2007a), and oth-
ers. Here we recapitulate the key results without rederiv-
ing them.
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We employ two coordinate systems centered on the cen-
ter of the ellipsoid. The x coordinate axes are fixed (for
example, geographic), while the x̃ coordinate axes rotate
with the axes of the ellipsoid (Fig. 2). The two coordinate
systems are related by

x̃ = Qx, (A.1)

where Q is a rotation matrix. The rows of Q are unit
vectors (in x coordinates) indicating the directions of the
ellipsoid semi-axes in a right-handed manner. Differenti-
ating the orthogonality condition QQ> = I, we obtain

Q̇Q> + QQ̇> = 0. (A.2)

The ellipsoid tensor E is the symmetric, positive-definite
(0, 2)-tensor such that the ellipsoid is the set of points
x satisfying x>Ex = 1. This tensor E diagonalizes as
E = Q>ẼQ, where

Ẽ =

 a−21 0 0
0 a−22 0
0 0 a−23

 ,
and the ai > 0 are the semi-axis lengths of the ellipsoid
(Fig. 3). This Ẽ is E expressed in x̃ coordinates. When
expressing tensors in x̃ coordinates, we consistently use
the tilde ˜.

The deformation of the host rock is defined by ẋ = Lx
(Eq. (1)), where L is a constant tensor of trace zero. After
substituting Eq. (A.1) into Eq. (1) we have ˙̃x = L̃x̃, where

L̃ = QLQ> −QQ̇>. (A.3)

Let r be the ratio of the viscosity of the inclusion to the
viscosity of the host rock. We assume that r is constant.
The deformation of the ellipsoidal inclusion is homoge-
neous (Eshelby, 1957; Bilby et al., 1975): For all x inside
the inclusion and along its boundary, ẋ = Kx, for some
time-dependent velocity gradient tensor K. Describing K
and related quantities is the goal of this appendix. In
preparation, recall that any matrix M can be decomposed
as a sum

M =
1

2

(
M + M>)+

1

2

(
M−M>)

of symmetric and antisymmetric matrices. Let L = D +
W, L̃ = D̃ + W̃, and

K̃ = C̃ + Ṽ (A.4)

be these decompositions of L, L̃, and K̃. Then from
Eqs. (A.3) and (A.2) it follows that

D̃ = QDQ>, (A.5)

W̃ = QWQ> −QQ̇>. (A.6)

The tensor C̃ is given by

C̃ij = D̃ij + (1− r)
3∑
k=1

3∑
l=1

S̃ijklC̃kl, (A.7)

where

S̃iijj =
3

4π
a2jJij ,

S̃ijij = S̃ijji =
3

8π

(
a2i + a2j

)
Jij ,

all other S̃ijkl are zero,

Jii = 2πa1a2a3

∫ ∞
0

du

(a2i + u)2λ
,

Jij =
2

3
πa1a2a3

∫ ∞
0

du

(a2i + u)(a2j + u)λ

for i 6= j, and

λ =
√

(a21 + u)(a22 + u)(a23 + u).

For i 6= j, Eq. (A.7) simplifies to

C̃ij =
D̃ij

1 + 3(r−1)
4π (a2i + a2j )Jij

. (A.8)

For i = j, Eq. (A.7) simplifies to

C̃ii = D̃ii −
3(r − 1)

4π

3∑
k=1

ak
2JikC̃kk. (A.9)

Let J be a matrix whose (i, j)th entry is Jij as defined
above. Then Eq. (A.9) can be rewritten as

A

 C̃11

C̃22

C̃33

 =

 D̃11

D̃22

D̃33

 , (A.10)

where A = I + 3(r−1)
4π JẼ−1.

This dynamical model assumes that the deformation
is incompressible (Bilby et al., 1975). Incompressibility
corresponds to the velocity gradient tensor’s having trace
zero. From Eq. (A.9) and the identity

Ji1 + Ji2 + Ji3 =
4π

3ai2
(A.11)

(Eshelby, 1957, (3.11)), it is easily proved that r tr C̃ =
tr D̃. Meanwhile, tr C̃ = tr K̃ = tr K and tr D̃ = tr D =
tr L. Thus r tr K = tr L, so the inclusion’s deformation
is incompressible if the ambient deformation is. The ex-
pressions for C̃ii in Freeman (1987) and Jiang (2007a) are
equivalent to the volume-preserving case of Eq. (A.10).

The tensor Ṽ is given by

Ṽij = W̃ij + (1− r)
3∑
k=1

3∑
l=1

Π̃ijklC̃kl,

where

Π̃ijij = Π̃ijji =
1

8π
(Jj − Ji) ,

Ji = 2πa1a2a3

∫ ∞
0

du

(a2i + u)λ
,
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and all other Π̃ijkl = 0. This equation simplifies to

Ṽij = W̃ij +
r − 1

4π
(Ji − Jj)C̃ij . (A.12)

The approaches of Sections 3.2 and 3.3 require us to
compute K from E, L, and r at each time step. In analogy
with Eq. (A.3), K̃ = QKQ> −QQ̇>. From this equation
and Eq. (A.6) it follows that

K = Q>
(
K̃− W̃

)
Q + W, (A.13)

where(
K̃− W̃

)
ij

=

(
1 +

r − 1

4π
(Ji − Jj)

)
C̃ij (A.14)

by Eqs. (A.4) and (A.12). The approach of Section 3.2
further requires us to compute Ė at each time step. Dif-
ferentiating Eq. (2) and using Eq. (4), we have

0 = ẋ>Ex + x>Ėx + x>Eẋ

= x>
(
K>E + Ė + EK

)
x.

Because that equation holds for all x on the boundary of
the ellipsoid, the tensor in the middle must be zero, and
so

Ė = −K>E−EK. (A.15)

The approach of Section 3.1 requires us to compute ȧi
and Q̇ at each time step. In x̃ coordinates, Eq. (A.15)

is ˙̃E = −K̃>Ẽ − ẼK̃. Using Eqs. (A.4) and (3), we can
rewrite this matrix equation as nine scalar equations

˙̃Eij = a−2j Ṽij − a−2j C̃ij − a−2i C̃ij − a−2i Ṽij .

In the i = j case, d
dt

(
a−2i

)
= −2a−2i C̃ii, which implies that

ȧi = aiC̃ii. (A.16)

This differential equation describes the evolution of the
ellipsoid axis magnitudes over time. A differential equa-
tion governing the orientation Q is found by rearranging
Eq. (A.6):

Q̇ = W̃Q−QW. (A.17)

It remains to compute W̃. Because W̃ is antisymmetric,
W̃ii = 0 for all i. To compute W̃ij for i 6= j, notice that Ẽ

is always diagonal. Therefore ˙̃Eij = 0 and(
ai

2 + aj
2
)
C̃ij =

(
ai

2 − aj2
)
Ṽij . (A.18)

In the typical situation, when ai 6= aj , we have

Ṽij =
ai

2 + aj
2

ai2 − aj2
C̃ij . (A.19)

Combining this equation with Eqs. (A.8) and (A.12), we
have

W̃ij =

(
ai

2 + aj
2

ai2 − aj2
+

1− r
4π

(Ji − Jj)
)
C̃ij (A.20)

=
4π

ai
2+aj

2

ai2−aj2 + (r − 1)(Jj − Ji)
4π + 3(r − 1)(a2i + a2j )Jij

D̃ij . (A.21)

We discuss the special case of ai = aj in Appendix C.
In Eqs. (A.8), (A.9), and (A.12), setting r = 1 produces

C̃ = D̃ and Ṽ = W̃. This result makes sense. There is
no viscosity contrast, so the inclusion deforms passively,
as part of the surrounding rock (Freeman, 1987; Jiang,
2007a).

Consider the rigid limit r → ∞. We can rewrite
Eq. (A.10) as C̃11

C̃22

C̃33

 =
adj A

det A

 D̃11

D̃22

D̃33

 ,
where adj A is the adjugate of A (e.g., Lay, 1994, p. 179).
It is easily seen that det A is cubic in r, while the entries
of adj A are only quadratic in r. Hence adj A/det A→ 0
and the three C̃ii → 0 as r → ∞. In Eq. (A.8) we have
C̃ij → 0 for i 6= j. Thus C̃ → 0, which makes sense: The
rigid inclusion does not deform. Now if all of the ellipsoid
semi-axis lengths are distinct, then Eq. (A.19) implies that
Ṽ → 0 as well. However, the inclusion may still rotate.
In analogy with Eqs. (A.5) and (A.6), we have

C̃ = QCQ>, Ṽ = QVQ> −QQ̇>. (A.22)

From these equations, Eqs. (A.6) and (A.4), and C̃ = Ṽ =
0 it follows that

K = V = W −Q>W̃Q (A.23)

in the limit r →∞. By Eq. (A.21),

W̃ij →
Jj − Ji

3(a2i + a2j )Jij
D̃ij =

a2i − a2j
a2i + a2j

D̃ij , (A.24)

because Jij = (Jj−Ji)/(3a2i−3a2j ) (Eshelby, 1957, (3.13)).
This equation is identical to Jiang (2012, Eq. (15)), which
matches Jeffery (1922). The equation suggests that W̃ij =
0 when ai = aj , but see also Appendix C.

Appendix B. Spheroid case: Choosing Q

When two of the semi-axis lengths ai and aj are equal,
the ellipsoid is a spheroid. There is an ambiguity in how
we choose the orientations of the two equal semi-axes.
Namely, they can be freely rotated about the third semi-
axis, and still remain semi-axes of the spheroid. We now
explain how the foregoing dynamical calculations require
a particular choice of semi-axes.

When i 6= j but ai = aj , Eq. (A.18) implies that C̃ij = 0.
Then, by Eqs. (A.8) and (A.5),

D̃ij =
(
QDQ>

)
ij

= 0. (B.1)

Geometrically, Eq. (B.1) means that, as the deforming el-
lipsoid degenerates to a spheroid, the ellipsoid axes come
into partial alignment with the instantaneous stretching
axes of the ambient flow. In order to mitigate errors in
our numerical simulation — especially when starting from
an initial spheroid — we check this constraint on each time
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step. That is, if the ellipsoid is a spheroid, then we adjust
Q to satisfy Eq. (B.1), as follows. Given E, diagonalize it
as E = Q>ẼQ, where Ẽ is as in Eq. (3). If a1 = a2, then
compute D̃ = QDQ>,

θ =
1

2
arctan

2D̃12

D̃22 − D̃11

,

R =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
(If D̃22 = D̃11, then set θ = π/4.) It is easily checked
that

(
RQDQ>R>

)
12

= 0. So replace the previous choice

of Q with RQ. Similarly, if a1 = a3, then compute D̃ =
QDQ>,

θ =
1

2
arctan

2D̃13

D̃11 − D̃33

,

R =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 ,
and replace Q with RQ. If a2 = a3, then compute D̃ =
QDQ>,

θ =
1

2
arctan

2D̃23

D̃33 − D̃22

,

R =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,
and replace Q with RQ. If all three semi-axes are equal,
then all three of these corrections should be performed.
The effect is to completely align the ellipsoid axes with the
instantaneous stretching axes of the ambient deformation.
These corrections appear different from, but are in fact
identical to, those of Jiang (2007a).

Appendix C. Spheroid case: Computing W̃

Other than ensuring that Q is compatible with D ac-
cording to Appendix B, the approaches of Sections 3.2
and 3.3 do not need to treat spheroids as a special case.
The approach of Section 3.1, on the other hand, breaks
down at Eq. (A.21). The indeterminate form of W̃ in that
equation suggests that we should compute a limit. Several
complications arise.

First, the orientation matrix Q does not depend contin-
uously on E. For example, let θ be any angle and

Q(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .
Let a1 6= a2 be any two semi-axis lengths,

Ẽ(τ) =

 a−21 0 0
0 (a2 + τ)−2 0
0 0 (a2 − τ)−2

 ,

and E(θ, τ) = Q(θ)>Ẽ(τ)Q(θ). For small τ 6= 0, E(θ, τ)
is a triaxial ellipsoid, that has Q(θ) as its unique (up to
permutations of the axes) orientation matrix Q. That is,
if we hold θ fixed, then limτ→0 Q = Q(θ). However, all
of these ellipsoids E(θ, τ) have the same limit as τ → 0,
namely the spheroid E(θ, 0) = Ẽ(0). Thus the limit of Q,
as E approaches this spheroid, depends on the direction θ
of approach, and Q is discontinuous in E.

Nevertheless, we assume without proof that, in any par-
ticular deforming ellipsoid problem, Q is a sufficiently
smooth function of time t. This assumption is physically
reasonable, and if it does not hold, then simulating Q using
numerical approximations is apparently hopeless. Then,
by Eq. (A.6), W̃ is also a smooth function of t.

Fix indices i 6= j, and let k be the other index, so that
i 6= k 6= j. Suppose that a deforming ellipsoid E = E(t)
degenerates to a spheroid, so that ai = aj 6= ak at t = 0.
Then, by Eqs. (A.21) and (A.5),

lim
t→0

W̃ij = b lim
t→0

(QDQ>)ij
ai − aj

,

where

b =
ai(0)

1 + 3(r−1)
2π a2i (0)Jij(0)

(assuming that the limit on the right exists). The limit on
the right is of the form “0/0”, and thus equals

limt→0(Q̇DQ> + QDQ̇>)ij
limt→0 ȧi − ȧj

by l’Hôpital’s rule (assuming that these new limits exist,
and that the bottom limit is nonzero).

To compute the top limit, we use Eqs. (A.5), (A.2), and
(A.17). We obtain

c− (D̃ii − D̃jj) lim
t→0

W̃ij ,

where

c = (D̃QWQ> −QWQ>D̃)ij + W̃ikD̃kj − D̃ikW̃kj

evaluated at t = 0. The bottom limit is

lim
t→0

(
aiC̃ii − ajC̃jj

)
= ai(0) lim

t→0

(
C̃ii − C̃jj

)
by Eq. (A.16). Assume without loss of generality that
a1a2a3 = 1. Also, to keep the notation manageable, sup-
pose for the moment that i = 2 and j = 3. Then, at t = 0,
we have a1 = a−22 = a−23 , J22 = J33 = 3J23, and

J =


4πa62−8π

3a22
+ 8J23

4π
3a22
− 4J23

4π
3a22
− 4J23

4π
3a22
− 4J23 3J23 J23

4π
3a22
− 4J23 J23 3J23

 ,
by Eq. (A.11). The matrix A of Eq. (A.10) is now simple
enough to be inverted symbolically. Using that equation
and the incompressibility condition tr C̃ = tr D̃ = 0, we
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find that C̃22− C̃33 = b(D̃22− D̃33)/a2 at t = 0. Similarly,
in any ai = aj case, we have

C̃ii − C̃jj = b(D̃ii − D̃jj)/ai

at t = 0, and the bottom limit is b(D̃ii(0)− D̃jj(0)). Typ-

ically, D̃ii(0) 6= D̃jj(0), so the bottom limit is nonzero.
Then we have

lim
t→0

W̃ij = b
c− (D̃ii(0)− D̃jj(0)) limt→0 W̃ij

b(D̃ii(0)− D̃jj(0))
,

which is easily solved for the limit of W̃ij . In summary,

when ai = aj 6= ak and D̃ii 6= D̃jj ,

W̃ij =
(D̃QWQ> −QWQ>D̃)ij + W̃ikD̃kj − D̃ikW̃kj

2(D̃ii − D̃jj)

at t = 0.
In this appendix, we do not attempt to resolve the spe-

cial subcases where D̃ii = D̃jj or ai = aj = ak. The cal-
culations seem arduous, and they are not needed by our
preferred methods (Sections 3.2 and 3.3). In retrospect,
those methods appear to be simpler than the method of
Section 3.1.

Jiang (2007a, 2012) handles the ai = aj case by declar-

ing, without strong justification, that W̃ij = Ṽij =
(QWQ>)ij (in our notation, and using Eq. (A.12)). To
compare that answer to ours, we have performed a series
of numerical experiments. In each experiment, we ran-
domly choose a spheroid E, a velocity gradient tensor L,
and a viscosity ratio r. We deform E by L for a short
time period, to obtain a triaxial ellipsoid that is close to
the spheroid. Assuming that W̃ varies continuously with
time, the triaxial W̃ should be close to the spheroid W̃.
The experiments consistently show the triaxial W̃ to be
significantly closer to our spheroid W̃ than to the spheroid
W̃ of Jiang (2007a, 2012), suggesting that ours is the cor-
rect approach to computing W̃ in the spheroid case.

Eq. (A.24) suggests that W̃ij = 0 for rigid spheroids with
ai = aj . It is noteworthy that neither our answer for the

deformable spheroid W̃ij , nor that of Jiang (2007a, 2012),
limits to zero as r →∞. This example illustrates some of
the difficulties of working with multiple limits (ai−aj → 0
and r →∞) simultaneously.

Appendix D. Runge-Kutta methods

First we review the classic fourth-order Runge-Kutta
method. We wish to solve an ordinary differential equation

ẏ = f(t, y),

where y = y(t) is a path in some Euclidean space Rm. Like
the Euler method, the Runge-Kutta method divides the
time interval [0, 1] into n equal subintervals, each of length
h, and computes approximations y0, y1, . . . , yn, with y0 =
y(0) and yn ≈ y(1). It computes ys+1 from ys by this
algorithm:

1. Let k1 = f(hs, ys).

2. Let k2 = f(h(s+ 1
2 ), ys + h

2k1).

3. Let k3 = f(h(s+ 1
2 ), ys + h

2k2).

4. Let k4 = f(h(s+ 1), ys + hk3).

5. Then ys+1 = ys + h
6 (k1 + 2k2 + 2k3 + k4).

A typical Lie group is non-commutative. As a conse-
quence, there arise two distinct but similar senses of differ-
ential geometry on the Lie group, called the left- and right-
invariant affine connections. For each of these geometries,
there is a Runge-Kutta method. As we present them here,
the left and right Runge-Kutta methods appear dissimilar
from each other, because we have tried to alter them only
minimally from the existing literature. In both methods,
G is a matrix Lie group, g is the corresponding Lie alge-
bra, the bracket on g is defined by [M,N] = MN−NM,
and the exponential map exp : g→ G is the matrix expo-
nential.

Suppose that we wish to solve

ẏ = f(t, y) · y,

where y = y(t) is a path in G with given initial point y(0),
and f : R×G→ g is any function. For example, Eq. (6) is
of this form, as long as K depends on t and F only. Then
the right-invariant fourth-order Runge-Kutta method of
Munthe-Kaas (1999) applies. It evolves ys to ys+1 over a
time step of size h as follows:

1. Let k1 = f(hs, ys).

2. Let k2 = dexpinv
(
h
2k1, f(h(s+ 1

2 ), exp(h2k1)ys)
)
.

3. Let k3 = dexpinv
(
h
2k2, f(h(s+ 1

2 ), exp(h2k2)ys)
)
.

4. Let k4 = dexpinv (hk3, f(h(s+ 1), exp(hk3)ys)).

5. Then ys+1 = exp(h6 (k1 + 2k2 + 2k3 + k4))ys.

Here, dexpinv : g× g→ g is defined (to fourth order) by

dexpinv(u, v) = v − 1

2
[u, v] +

1

24
[u, [u, v]].

Similarly, suppose that we wish to solve

ẏ = y · f(t, y). (D.1)

Then the left-invariant fourth-order Runge-Kutta method
of Munthe-Kaas (1998) applies. This method evolves ys
to ys+1 over a time step of size h as follows.

1. Let k1 = f(hs, ys).

2. Let k2 = f(h(s+ 1
2 ), ys exp(h2k1)).

3. Let k3 = f(h(s+ 1
2 ), ys exp(h2k2 + h2

24 [k1, k2])).

4. Let k4 = f(h(s+ 1), ys exp(hk3 + h2

6 [k1, k3])).

5. Let v = h
6 (k1 + 2k2 + 2k3 + k4).

6. Let w = h
24 (3k1 + 2k2 + 2k3 − k4).

7. Then ys+1 = ys exp(v + [w, v]).

The equation Ḟ = KF can be rewritten in the form of
Eq. (D.1), as follows. By the product rule for differentia-
tion of matrices,

0 =
d

dt

(
FF−1

)
= Ḟ · F−1 + F · d

dt

(
F−1

)
.
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Combining this equation with Ḟ = KF yields

d

dt

(
F−1

)
= F−1 · −K,

which is of the desired form as long as K depends on t and
F−1 only.

Appendix E. Miscellaneous computations

In this appendix, we describe two averaging techniques
with a Lie-theoretic flavor: averaging ellipsoids, and aver-
aging lineation-foliation pairs. These concepts are used in
Section 5.2. We also describe how logarithms enter into
the 39 equations of that subsection.

For any set of m ellipsoid tensors E1, . . . ,Em, one can
define the arithmetic and geometric means by

arith(E1, . . . ,Em) =
1

m

m∑
i=1

Ei,

geom(E1, . . . ,Em) = exp
1

m

m∑
i=1

log Ei

(Wheeler, 1986; Brandon, 1995), where exp and log denote
the matrix exponential and logarithm functions (Provost
et al., 2004; Davis and Titus, 2011). These concepts of
mean are called “arithmetic” and “geometric” because,
when they are applied to symmetric, positive-definite 1×1
tensors, they reproduce the ordinary arithmetic and geo-
metric means of numbers.

It is easy to show that, because the Ei are symmetric
and positive-definite, so are the arithmetic and geometric
means. That is, both means constitute well-defined no-
tions of average ellipsoid. However, the geometric mean
enjoys several convenient properties that the arithmetic
mean lacks. For example, if all Ei are normalized to have
determinant one, then the geometric mean has determi-
nant one as well. For another example, when the Ei have
the same orientation but differ in magnitude, the geomet-
ric mean of the tensors amounts to a geometric mean of
semi-axis lengths. The arithmetic mean of the tensors
amounts to a more complicated operation on these lengths.

Similarly, we can average lineation-foliation pairs, as fol-
lows. First, let l and f be unit vectors aligned with the
lineation and foliation pole. Fix a coordinate system. Let
R be the matrix whose rows are l, f × l, and f . Then
R is a rotation matrix, and {l, f × l, f} is a right-handed
orthonormal coordinate frame, obtained by applying the
rotation R−1 = R> to the basis vectors of the geographic
coordinate frame. In this manner, a lineation-foliation pair
can be regarded as an oriented coordinate frame, or as a
rotation, which is an element of the Lie group SO(3) (Sec-
tion 3.3).

The question, then, is how to compute averages in
SO(3). Let R1, . . . ,Rm be m rotations. Unless it hap-
pens to be a rotation by π = 180◦, each Ri has a princi-
pal matrix logarithm log Ri, all of whose eigenvalues have

imaginary part in the interval (−π, π) (Davis and Titus,
2011, Appendix C). Each log Ri is an element of so(3),
meaning that it is antisymmetric. Thus 1

m

∑
i log Ri is

antisymmetric, and hence

R̄ = exp
1

m

m∑
i=1

log Ri

is a rotation, which we take to be the average of the m
given rotations.

This procedure sometimes produces unexpected results,
due to the many-to-one nature of the exponential map
from so(3) to SO(3). In other words, the logarithm in-
volves a branch cut, which we have chosen to place along
the set of rotations by π. There is an analogous prob-
lem in two dimensions, in which a heading of 359◦ and
a heading of 001◦ average to 180◦ rather than 000◦, due
to a branch cut at 000◦. We do not attempt to describe
a general, fully reliable rotation-averaging method here.
The procedure just described suffices for our application
in Section 5.

Finally, in Section 5.2, in each deforming clast subprob-
lem, we must compute the difference between an observed
clast ellipsoid and a predicted clast ellipsoid. Because the
logarithms inhabit a vector space and the ellipsoid tensors
do not, it makes more mathematical sense to use a Eu-
clidean distance on the logarithms than on the ellipsoid
tensors themselves. Thus the distance between ellipsoids
E and E′ is computed as

dist(E,E′) =

√√√√ 3∑
i=1

3∑
j=1

(log E− log E′)2ij .

In the lineation/foliation subproblem, we similarly ask the
logarithm of ∆1 to be diagonal, rather than ∆1 itself.
This tactic makes the weight of the lineation/foliation sub-
problem more commensurate with the weights of the clast
subproblems. If this tactic is not employed, then the to-
tal error of the model is highly sensitive to noise in the
lineation/foliation data, when finite strain ellipsoid mag-
nitudes are large.
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