
Our textbook proves that TQBF is PSPACE-complete. The same proof is replicated all over the Web.

Every treatment that I’ve found glosses over too many details for my taste, especially in the base case.

So I’ve written out these notes, to make the proof more explicit.

Recall that TQBF is the set of all true, fully quantified Boolean formulas. We have already demon-

strated that TQBF is in PSPACE. So it remains to prove that TQBF is PSPACE-hard.

Theorem 0.1. Any language L ∈ PSPACE is polynomial-time-reducible to TQBF.

Proof. Let M be a deterministic Turing machine that decides L in polynomial space. There exists some

constant k such that, for all n and all strings w of length n, M uses at most nk space to decide whether

w ∈ L. Let Q be the state set of M and Γ the tape alphabet of M . A configuration of M is a string

a0a1 · · · ank over Q∪Γ in the usual way. When M is given input w = w1 · · ·wn, its starting configuration

is

cstart = qstartw1 · · ·wn · · · .

Without loss of generality, we assume that M , before halting, empties its tape and parks its tape head

at the far left, so that its unique accepting configuration is

caccept = qaccept · · · .

Notice that T = |Q ∪ Γ|nk+1 is an upper bound on the number of configurations of M , and hence on

the time that M requires to accept or reject w. For any input w, we will recursively construct a fully

quantified Boolean formula that describes the operation of M on w. The formula will be true if and only

if M accepts w.

We need to establish a preliminary concept. For any symbol c, we can form a set

{ci,s : i = 0, . . . , nk, s ∈ Q ∪ Γ}

of |Q∪Γ| · (nk + 1) variables. Any given configuration of M corresponds to a unique assignment of truth

values to these variables: Namely, ci,s is true in the assignment if and only if cell i of the configuration

contains symbol s. On the other hand, there are some assignments of truth values that do not correspond

to any configuration of M — for example, an assignment in which c3,a and c3,b are both true, or an

assignment in which c4,q and c6,q are both true (for q ∈ Q).

Given two symbols c and d, we have two variable sets {ci,s} and {di,s}, and we can write the Boolean

formula

φc,d,0 =

nk∧
i=0

∧
s∈Q∪Γ

(ci,s ∧ di,s) ∨ (ci,s ∧ di,s).

Because the formula is unquantified, its truth or falsity depends on an assignment of truth values to its

variables; under some assignments it is true, and under other assignments it is false. What we can say

is this: If we assign truth values to the c-variables based on a certain configuration of M , and we assign

truth values to the d-variables based on another configuration of M , then the formula is true if and only

if the two configurations are identical — that is, iff M can go from the first configuration to the second

in zero steps.

We now wish to write a formula that is true iff M can go from one configuration to another in one step.

This formula will incorporate information about M ’s transition function δ : Q × Γ → Q × Γ × {L,R}.
1

TQBF CS 254, Spring 2012, Carleton College

Namely, if δ(q, a) = (r, b,L), then consider the formula

φ
j,(q,a,r,b,L)
c,d,1 = cj,q ∧ cj+1,a ∧ dj−1,r ∧ dj+1,b ∧

(∨
e∈Γ

cj−1,e ∧ dj,e

)

∧

 ∧
i∈{0,...,j−2,j+2,...,nk}

∧
s∈Q∪Γ

(ci,s ∧ di,s) ∨ (ci,s ∧ di,s)

 .

If we assign truth values to the c- and d-variables based on two configurations of M , then φ
j,(q,a,r,b,L)
c,d,1

is true if and only if the first configuration has its state marker in cell j and M moves from the first

configuration to the second using the transition δ(q, a) = (r, b,L). The first line of the formula expresses

the change of state, the movement of the tape head, and the modification of the tape around the tape

head; the second line of the formula expresses the fact that the rest of the tape remains unchanged. One

can invent a similar formula to express transitions of the form δ(q, a) = (r, b,R). Then let

φc,d,1 = φc,d,0 ∨
∨
j

∨
(q,a,r,b,D)∈δ

φ
j,(q,a,r,b,D)
c,d,1 .

The variables in φc,d,1 are all free (unquantified). If we assign truth values to the c- and d-variables based

on two configurations of M , then φc,d,1 is true if and only if M can transition from the first configuration

to the second in one or fewer steps. This is the base case of our recursion.

Now suppose that t > 1. Consider the formula

φc,d,t = ∃m
(
φc,m,t/2 ∧ φm,d,t/2

)
,

where m is a symbol distinct from c and d, and “∃m” is shorthand for the concatenation of the |Q ∪ Γ| ·
(nk + 1) quantifiers ∃mi,s, for i = 0, . . . , nk and s ∈ Q ∪ Γ. This formula is free on the c- and d-variables

but quantified on all of its other variables. If we assign truth values to the c-variables based on one

configuration of M , and truth values to the d-variables based on another configuration of M , then we

obtain a fully quantified Boolean formula that is true if and only if M can go from the first configuration

to the second in t or fewer steps. If we use cstart and caccept as our two configurations, and t = T for our

time bound, then φc,d,t is true if and only if M accepts w. In other words, this algorithm is a reduction

from L to TQBF:

(1) For some symbols c and d, recursively compute φc,d,T .

(2) Replace the d-variables with their truth values determined from caccept.

(3) For the given w, replace the c-variables with their truth values determined from the starting

configuration cstart of M on input w.

The problem with this reduction is that the resulting formula is too large. On each step of the recursion,

we halve t, but we double the number of φ-formulas involved. In the end, the number of subformulas

of the form φc,d,1 will be proportional to T , and hence exponential in n. So the space required will be

exponential in n, and the time required must be (at least) exponential in n. We wanted a polynomial-time

reduction.

We can do better by replacing the conjunction in φc,d,t with a universal quantifier. Let φc,d,t be the

formula

∃m ∀(c′, d′) ∈ {(c,m), (m, d)} φc′,d′,t/2.
2

TQBF CS 254, Spring 2012, Carleton College

This formula is really shorthand for

∃m ∀c′ ∀d′ ((φc′,c,0 ∧ φd′,m,0) ∨ (φc′,m,0 ∧ φd′,d,0))→ φc′,d′,t/2.

Keep in mind that each quantifier here is actually shorthand for |Q ∪ Γ| · (nk + 1) quantifiers. How long

is this formula? Well, before the → symbol, there are three sets of O(nk) quantifiers each, and there are

four formulas of the form φc,d,0, each of which is O(nk). So each level of recursion adds O(nk) symbols

to the formula. There are

log2 T = log2 |Q ∪ Γ|n
k+1 = (nk + 1) log2 |Q ∪ Γ| ∈ O(nk)

levels of recursion. So the total length of the formula is O(n2k). In addition, computing this polynomial-

length formula requires only polynomial time, because at each level of recursion the algorithm simply

selects three new symbols m, c′, d′, writes some quantifiers and φc,d,0-terms based on those symbols, and

divides t by two.

�

A detail: The Turing machine that computes the reduction is not given k. So it might have to try

various values of k, until it finds one that works. This inflates the running time by a constant factor.

Another detail: The divisions by two are a bit messy, unless T is a power of two. So make T be the

smallest power of two that is at least |Q ∪ Γ|nk+1.

Another detail: Writing a symbol with subscripts requires more than one tape cell. The size of the

subscripts is logarithmic in nk, so this detail can’t ruin the running time.

3

