Day 02 CS 254, Spring 2013, Carleton College

A. Do problem 1.5¢ from our textbook.

B. Do problem 1.6j from our textbook.

This next problem is about checking the validity of an HTML file. You don’t need to know

HTML. (It might be better if you didn’t.) To keep the problem manageable, we use a highly
simplified version of HTML, and we ignore all of the text in the file other than the tags. The

HTML file is regarded as a string over the 14-symbol alphabet

Y, = {html, /html, head, /head, title, /title, body, /body,ul, /ul,1li, /1i,a, /a}.

We consider the file to be valid if and only if it meets the following criteria. (Later in this course,

we will develop a more precise method of stating such criteria.)

The file must begin with html and end with /html. These symbols cannot occur anywhere

else in the file.

Immediately after html there must be a header, which begins with head and ends with

/head. These two tags cannot occur elsewhere.

The header must either contain no tags at all, or must contain a single title. A title begins
with title, ends with /title, and contains no other tags. These two tags cannot occur

elsewhere.

Immediately after the header there must be a body, which begins with body and ends with

/body. These two tags cannot occur elsewhere.

The body may contain any number (0 or more) of unordered lists. An unordered list begins

with ul and ends with /ul.

An unordered list may contain any number of list items. A list item begins with 1i and

ends with /1i.

Within any list item there can occur any number of a tags. Within the body, but outside
any unordered lists, there can occur any number of a tags. Whenever an a tag occurs, the

next tag must be a /a tag.

C. Draw a DFA that accepts valid HTML and rejects invalid HTML, as just defined. To

keep your drawing clear, please adopt the following convention. If a state ¢ has no outgoing

transition arrow for a symbol a, then it is understood that the machine rejects its input when

it is in state ¢ and sees symbol a.



Day 02 CS 254, Spring 2013, Carleton College

In this next problem, we are going to implement DFAs in Python. We need to agree on a

format. Let’s say that a DFA in Python is a tuple (an immutable list) of five objects:
e (Q: Tuple of arbitrary (but hashable) Python objects.
e >: Tuple of characters.
e ¢o: Python object. Must be one of the elements of Q.
e [: Tuple of Python objects. Must be subset of (), not necessarily in the same order.

e 0: Dictionary. Each key is a 2-tuple of the form (¢, a), where ¢ € @ and a € 3. Each value
is an element of Q. If any pair (¢,a) € @ x X is missing from the dictionary’s keys, then

it is understood that the DFA rejects when it must transition out of state ¢ via symbol a.

D. Write a function dfa that takes two inputs — a DFA M and an input string w — runs
M on w, and outputs True if M accepts and False if M rejects. You may assume that M is a
well-formed DFA and that the alphabets of M and w match. Print your solution on paper, for

submission with the rest of the assignment.

To give you an idea of how hard this problem is, my implementation is eight lines long, and
none of the lines is very complicated. Here is some code to help you test your implementation.

M is the DFA from the end of class on Day 01.

if __name__ == "__main__":
delta = {("qO0", "0"):"q1", ("qO", "1"):"qO",
("gq1", "0"):"q2", ("qi", "1"):"q1i",
("g2", "0"):"qO0", ("g2", "1"):"q2"}
m = (("q0", "qi", "q2"), ("O", "1"), "qO", ("qO0",), delta)
for w in ["", "O", "OOO", "0OOOOOO", "100", "11", "0111001111"]:

print w, dfa(m, w)



