
Exam C Solutions CS 254, Spring 2012

A. Let A,B ∈ P. Let M , N be deterministic Turing machines that decide A, B in time

O(nk), O(n`), respectively. Define a Turing machine K that, on input w = w1 · · ·wn, does the

following.

1. For i = 0, . . . , n:

(a) K runs M on w1 · · ·wi.

(b) K runs N on wi+1 · · ·wn.

(c) If both M and N accept, then K accepts; otherwise, K continues.

2. If K has not accepted by now, then K rejects.

Thus K accepts a string w if and only if that string can be expressed as the concatenation of a

string in A and a string in B. The running time of K on an input of length n is no worse than

n ·
(
O(nk) +O(n`)

)
= O(n1+max(k,`)).

So K is polynomial-time. Thus P is closed under concatenation.

B. We know from class and the textbook that NP ⊆ PSPACE. So, if any language in

PSPACE is reducible to B, then any language in NP is reducible to B.

(If you don’t remember that NP ⊆ PSPACE, here’s how you could figure it out. We know

that NP ⊆ NPSPACE, because a Turing machine cannot use more space than it uses time.

We know that NPSPACE ⊆ PSPACE, because of the theorem that says that simulating a

nondeterministic Turing machine with a deterministic one causes only a quadratic blowup in

the space required.)

C. You’ve proved in your homework that A is not decidable, probably by mimicking our

proof that K(x) is not computable. Essentially the same proof shows that A is not recognizable.

Suppose that M is a recognizer for A. Define a Turing machine N that, on input n (regarded

as an integer in binary), outputs a string x such that K(x) ≥ n. N can do this by running M on

all strings of length n, in parallel. At least one of these strings x is incompressible. Eventually,

M will eventually tell N that x is incompressible. At that point, N stops running M and outputs

x. Let m be any integer large enough that

m− dlog2me − 1 > |N |+ |#|.

Let x = N(m). Then N#m is a description of x, of length less than m, so K(x) < m. But

the definition of N guarantees that K(x) ≥ m. This contradiction shows that A cannot be

recognizable.

1

Exam C Solutions CS 254, Spring 2012

D. Let D be a regular expression matching any digit. Let L match any letter, and let A

match any character other than carriage returns. Let C be the carriage return character (usually

written \n or \r in programming languages). Let denote a space. Then an addressee is

AA∗,

(without the comma), a street address is

DD∗ ∗AA∗,

a P.O. box is

PO Box ∗DD∗,

and a valid third line is

AA∗, ∗LL ∗DDDDD(ε ∪ −DDDD).

So a valid postal address is

AA∗C(DD∗ ∗AA∗ ∪ PO Box ∗DD∗)CAA∗, ∗LL ∗DDDDD(ε ∪ −DDDD).

E. Assume (for the sake of contradiction) that A is a CFL. Let p be the pumping length

guaranteed to exist for A by the pumping lemma for CFLs. Let

s = 1p0p#1p0p.

Then s ∈ A, so the pumping lemma guarantees that s = uvxyz for strings u, v, x, y, z such that

|vxy| ≤ p, |vy| ≥ 1, and uvixyiz ∈ A for all i ≥ 0. There are several cases.

• If vxy is contained in the 1p0p on the left-hand side, then we can pump up to make the

left-hand side longer than the right-hand side. In particular, uv2xy2z 6∈ A.

• Similarly, if vxy is contained in the 1p0p on the right-hand side, then we can pump down

to make the right-hand side shorter than the left-hand side: uxz 6∈ A.

• The only remaining case has # ∈ vxy. Then clearly # ∈ x, or else we could pump v

and y to wreck the number of #s. Because |vxy| ≤ p, we know that v = 0k and y = 1`

for some k, ` ≤ p. We must have k > 0, because otherwise pumping v and y would just

mean pumping y, and we could pump down to make the right-hand side shorter than the

left-hand side. But then, because v is a nonempty string of 0s, pumping up v and y causes

the left-hand side to have more 0s than does the right-hand side, so we again leave A.

2

Exam C Solutions CS 254, Spring 2012

We have shown that, no matter how u, v, x, y, and z are arranged, we can pump to leave the

language A. This contradiction shows that A cannot be context-free.

F. For any Turing machine M and string w, define a Turing machine N that, on input x,

simply runs M on w and then accepts. So, if M halts on w, then N accepts all strings x, and

L(N) is infinite. On the other hand, if M does not halt on w, then N does not halt on any input

x, so L(N) = ∅ is finite. Thus the function that takes 〈M,w〉 to N is a computable reduction

of HALTTM to A. Because HALTTM is not recognizable, it follows that A is not recognizable.

3

