
Exam 2 Answers Math 232, Winter 2009

1. Explain in detail how you would find the fit curve using techniques of this

course. (Warning: To check your answer, you might want to make up four data

points and work out the solution explicitly.)

Answer: We want to solve


y1

...

yN

 =


1 cos x1 cos2 x1 cos 2x1

...
...

...
...

1 cos xN cos2 xN cos 2xN




a

b

c

d

 .

Let A denote that big N × 4 matrix made from the xi. From our discussion of least squares we

know that if A has rank 4, then A>A is invertible and the least squares solution
(
A>A

)−1
A>~y.

However, our A is not of rank 4, because the set of functions {1, cos x, cos2 x, cos 2x} is not

linearly independent! For example, cos 2x = −1 + 2 cos2 x. So let’s throw out the cos 2x term.

Now we want to solve 
y1

...

yN

 =


1 cos x1 cos2 x1

...
...

...

1 cos xN cos2 xN




a

b

c

 .

The procedure is to let A be that big N × 3 matrix (which is of rank 3, as needed) and compute

the least squares solution as 
a

b

c

 =
(
A>A

)−1
A>~y.

This gives us the coefficients a, b, c to use in the fit curve y = a+b cos x+c cos2 x. This function

satisfies the requirements of the problem, because it is of Ms. Ogunmola’s requested form with

d = 0.

[Remark: I expected that most students would not realize that the four functions are not

independent. That is why I suggested working an example; in any example it becomes clear

that A>A is not invertible (although it may not be clear how to fix this).]

[Remark: Instead of throwing out cos 2x we could throw out 1 or cos2 x. We could not throw

out cos x without truly making our wind speed model less expressive.]

2. Show that if ~n is perpendicular to a given polygon, then
(
A−1

)>
~n is perpen-

dicular to the transformed polygon.

Answer: Let ~v be any vector lying in the transformed polygon. We wish to show that((
A−1

)>
~n
)
· ~v = 0. Toward that end, let ~y1 and ~y2 be the points at the head and tail of ~v, so

that ~v = ~y1 − ~y2. These points ~y1 and ~y2 are in the transformed polygon, so there must exist

points ~x1 and ~x2 in the original polygon such that A~x1 = ~y1 and A~x2 = ~y2. Because ~x1 and
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~x2 are points in the original polygon, ~x1 − ~x2 is a vector lying in the original polygon, and so

~n · (~x1 − ~x2) = 0. Then, using the basic facts that ~a ·~b = ~a>~b and (BC)> = C>B>, we have((
A−1

)>
~n
)
· ~v =

((
A−1

)>
~n
)>

(~y1 − ~y2)

= ~n>A−1(A~x1 −A~x2)

= ~n>(~x1 − ~x2)

= ~n · (~x1 − ~x2)

= 0.

3. What happens in the special case when A is a rotation? Explain in detail.

Answer: If A is a rotation, then A preserves the length of any vector, so A is orthogonal.

This implies that A−1 = A>, so that
(
A−1

)> = A. In this special case, normals transform by

A. This makes sense, because an orthogonal transformation such as a rotation preserves angles;

if ~n is perpendicular to a polygon, then after both are transformed orthogonally the results will

still be perpendicular.

4. Using only the definitions of trace and matrix multiplication, prove that for

any two matrices A and B,

tr(AB) = tr(BA).

Answer: For any n× n matrices A and B,

tr(AB) =
n∑

i=1

(AB)ii

=
n∑

i=1

n∑
k=1

AikBki

=
n∑

k=1

n∑
i=1

BkiAik

=
n∑

k=1

(BA)kk

= tr(BA).

5. Using Problem 4, prove that for any matrix C and any invertible matrix S,

tr(SCS−1) = tr C.
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Answer: Let A = S and B = CS−1. Then, using Problem 4,

tr(SCS−1) = tr(AB) = tr(BA) = tr(CS−1S) = tr C.

6. Prove that B̄ is really a basis for V̄ .

Answer: First we show that B̄ = {f1, . . . , fn} is linearly independent. Suppose that c1f1 +

c2f2 + · · ·+ cnfn = 0. Apply this function to v1:

0 = (c1f1 + c2f2 + · · ·+ cnfn)(v1)

= c1f1(v1) + c2f2(v1) + · · · cnfn(v1)

= c1 · 1 + c2 · 0 + · · ·+ cn · 0

= c1.

So c1 = 0. Similarly, applying the function to any vj shows that cj = 0. Thus c1 = · · · = cn = 0.

This shows that B̄ is linearly independent. To show that it spans V̄ , let f : V → R be an arbitrary

linear transformation. Let c1 = f(v1), . . . , cn = f(vn). I claim that f = c1f1 + · · · + cnfn. To

see this, let vj be any element of B. Then

(c1f1 + · · ·+ cnfn)(vj) = c1f1(vj) + · · ·+ cnfn(vj)

= c1 · 0 + · · ·+ cj−1 · 0 + cj · 1 + cj+1 · 0 + · · ·+ cn · 0

= f(vj).

So the functions c1f1 + · · ·+ cnfn and f agree on every element of B, and hence on all of V .

7. What is the relationship between [T ]B and [T̄ ]B̄?

Answer: In order to simplify the notation, let A = [T ]B and B = [T̄ ]B̄. These mean that

T (vj) =
n∑

k=1

Akjvk,

T̄ (fi) =
n∑

k=1

Bkifk.

We now compute (T̄ (fi))(vj) = fi(T (vj)) in two different ways. On the one hand,

(T̄ (fi))(vj) =

(
n∑

k=1

Bkifk

)
(vj)

=
n∑

k=1

Bkifk(vj)

= Bji
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(because only the k = j term survives). On the other hand, using the fact that fi is linear we

have

fi(T (vj)) = fi

(
n∑

k=1

Akjvk

)

=
n∑

k=1

Akjfi(vk)

= Aij

(because only the k = i term survives). Thus Bji = Aij . We conclude that [T̄ ]B̄ = [T ]>B .

[Remark: Some students were skeptical of this problem; they seemed to suspect that I made

it up just to irritate them! I did not; the dual space (I substituted the term “mirror space” to

throw off potential cheaters) is a foundational concept used throughout linear algebra and its

applications. For example, you can’t do general relativity without it.]

[Remark: Remember that matrices are used to represent linear transformations (among other

things). Multiplying matrices corresponds to composing transformations; that’s why matrix

multiplication exists. Adding matrices corresponds to adding transformations. So to what does

transposing matrices correspond? Now you know: dualizing transformations.]

4


