
Exam 2 Math 232, Spring 2008

This exam begins for you when you open (or peek inside) this packet. It ends at 5:00 PM on Tuesday

2008 May 27. Between those two times, you may work on it as much as you like. I recommend that you

get started early and work often. The exam is open-book and open-note, which means, precisely:

• You may freely consult all of this course’s material: the Bretscher textbook, your class notes, your

old homework and exam, and the materials on the course web site. If you missed a class and need

to copy someone else’s notes, do so before either of you begins the exam.

• You may assume all theorems discussed in class or in the assigned sections of the book. You do not

have to prove or reprove them on this exam. On the other hand, you may not cite theorems that

we have not studied. If you are unsure of whether you are allowed to cite a theorem, just ask.

• You may not consult any other papers, books, microfiche, film, video, audio recordings, Internet

sites, etc. You may use a computer for these four purposes: viewing the course web site materials,

running Mathematica, typing up your answers, and e-mailing with me. If you use Mathematica, then

you may not load any packages other than Combinatorica (which is loaded in the 232.graphs.nb

notebook on the course web site). You may use a hand-held calculator instead of Mathematica, if

you like. You may not share any of these materials with another student.

• You may not discuss the exam in any way (spoken, written, pantomime, semaphore, etc.) with

anyone but me until everyone has handed in the exam — even if you finish earlier. During the exam

you will inevitably see your classmates around campus. Please refrain from asking even seemingly

innocuous questions such as “Have you started the exam yet?” If a statement or question conveys

any information, then it is not allowed; if it conveys no information, then you have no reason to

make it.

During the exam you may want to ask me questions. You may ask clarifying questions for free. If

you believe that the statement of a problem is wrong, then you should certainly ask for clarification. You

may also ask for hints, which cost you some points, to be decided by me as I grade your paper. I will

not give you a hint unless you unambiguously request it. I will try to check my e-mail over the weekend,

but there is always some lag, and doing math over e-mail is not easy.

Your solutions should be thorough, self-explanatory, and polished (concise, neat, and well-written,

employing complete sentences with punctuation). Always show enough work so that a classmate could

follow your solutions. Do not show scratch work, false starts, circuitous reasoning, etc. If you cannot

solve a problem, write a brief summary of the approaches you’ve tried. Submit your solutions in a single

stapled packet, presented in the order they were assigned.

Partial credit is often awarded. Exam grades are loosely curved — by this I do not mean that there

are predetermined numbers of As, Bs, Cs to be awarded, but rather that there are no predetermined

scores required for grades A, B, C.

Good luck!
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Orthogonal Complements

In R4, let
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1. Find a basis for the orthogonal complement of the span of {~u,~v, ~w}.

Skew-Symmetric Matrices

Let A be any n× n skew-symmetric matrix.

2A. Show that the kth power of A is symmetric if k is even and skew-symmetric if k is

odd.

2B. Show that if n is odd then A cannot be invertible.

Matrices For Inner Products

In class we’ve discussed how an inner product 〈·, ·〉 on Rn can be constructed using an n× n matrix

A, by the formula

〈~v, ~w〉 = ~v>A ~w.

However, we were vague about exactly which matrices could be used for this purpose. An n× n matrix

A is said to be positive-definite if for every nonzero vector ~v ∈ Rn,

~v>A~v > 0.

As you can check, A defines an inner product on Rn (by 〈~v, ~w〉 = ~v>A ~w) if and only if A is symmetric

and positive-definite.

Recall that a linear transformation T : Rn → Rn is orthogonal if it preserves the dot product:

T (~v) · T (~w) = ~v · ~w.

In class we showed that this is equivalent to requiring that that matrix [T ]E of the linear transformation

with respect to the standard basis E satisfy [T ]>E [T ]E = I. More generally, a linear transformation T is

said to be orthogonal with respect to an inner product 〈·, ·〉 if it preserves that inner product:

〈T (~v), T (~w)〉 = 〈~v, ~w〉.

3A. Let 〈·, ·〉 be an inner product defined by a symmetric, positive-definite matrix A as

above. Find a condition (like [T ]>E [T ]E = I — but it will be different from this) on the matrix

[T ]E that determines whether or not a linear transformation T : Rn → Rn is orthogonal with

respect to 〈·, ·〉.
So far in this problem we’ve been using the standard basis E . When A defines an inner product 〈·, ·〉

with respect to E , it makes sense to denote A by [〈·, ·〉]E , and to write the equation

〈~v, ~w〉 = ~v>A ~w
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as

〈~v, ~w〉 = [~v]>E [〈·, ·〉]E [~w]E .

Let B be some other basis for Rn. Then 〈·, ·〉 should be represented by some matrix [〈·, ·〉]B with respect

to that basis, such that

〈~v, ~w〉 = [~v]>B [〈·, ·〉]B [~w]B.

3B. Find a change-of-basis formula that relates [〈·, ·〉]B to [〈·, ·〉]E .

Some Minus-Signs

For any vectors ~v and ~w in R2, define

〈~v, ~w〉 = ~v>

[
1 0

0 −1

]
~w.

This is similar to the dot product, but with a minus sign. Define ||~v|| =
√
〈~v,~v〉, as one usually defines

a norm from an inner product. Unfortunately, this 〈·, ·〉 doesn’t define an inner product on R2, and this

|| · || doesn’t define a norm, either.

4A. Which parts of the definition of inner product does 〈·, ·〉 satisfy, and which parts does

it not satisfy?

4B. For which vectors ~v ∈ R2 is ||~v|| defined? For which ~v is it 0? For which ~v is it 1?

Answer these questions both in words/equations and in a detailed sketch of R2.

In class and homework (e.g. 2.2 #24) we have seen that any 2 × 2 special orthogonal matrix A can

be written as

A =

[
cos θ − sin θ

sin θ cos θ

]
for some angle θ. That is, a determinant-1 transformation of R2 that preserves the dot product must be

rotation by some angle θ.

Now I would like to develop a similar result for the 〈·, ·〉 of this problem. Even though 〈·, ·〉 is not an

inner product, we can still say that a linear transformation T : R2 → R2 is orthogonal with respect to

〈·, ·〉 if it preserves 〈·, ·〉:
〈T (~v), T (~w)〉 = 〈~v, ~w〉.

We can define a “rotation” to be a linear transformation with determinant 1 that is orthogonal with

respect to 〈·, ·〉. In order to characterize these 〈·, ·〉-rotations, it is helpful to know the hyperbolic trig

functions

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
.

These functions obey many identities that are similar to the regular trig identities, but with slight

differences in sign. For example, while cos2 x+ sin2 x = 1, the hyperbolic trig functions instead satisfy

cosh2 x− sinh2 x = 1.

Here are some other facts [added to the exam in a revision]:

• cosh(−x) = coshx.
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• sinh(−x) = − sinhx.

• cosh(x+ y) = coshx cosh y + sinhx sinh y.

• sinh(x+ y) = coshx sinh y + sinhx cosh y.

• sinh is a bijection (a one-to-one, onto function) from R to R, so there is an inverse function

arcsinh : R→ R.

4C. Describe the 〈·, ·〉-rotation matrices in terms of cosh and sinh.
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Plumbing

The map below shows a rural area divided into several plots of land, with one house per plot. Currently

the houses are not connected to any water/sewer system, but the landowners have negotiated with a

nearby town to connect to its system at point P . The town is willing to pay for running a water main (a

large pipe) due north from P and then diagonally across the landscape in a straight line. Each landowner

must pay for running a small pipe from his/her house to the water main. Because the plots are narrow

and the landowners don’t want each others’ pipes running across their land, they agree that all of these

small pipes will run due north/south from the houses to the water main. Here is a possible solution:

[Picture omitted.]

The landowners have hired you as a consultant, to help them plan where the water main should go.

You make a detailed survey of the area and determine that the houses are at the following coordinates,

relative to P .

[Picture omitted. The coordinates of the houses are (2, 5), (4, 7), (5, 6), (6, 2), (7, 8), (8, 6).]
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5. Using techniques from this course, find the route for the water main that minimizes

the total length of small pipe that the landowners must use, in a least-squares sense.

Epilogue: The water main ended up running through a mountain lion habitat, an ancient burial

ground, and an active volcano. There were no survivors.

Spacecraft Maneuvers

Recall from the previous exam that you are an aerospace engineer. A spacecraft traveling through

space can rotate in three distinct ways: pitch (raising or lowering its nose), yaw (turning its nose left or

right), and roll (turning about its front-back axis).

For example, if we place the spacecraft upright and pointing along the y-axis, then pitch is rotation

about the x-axis, yaw is rotation about the z-axis, and roll is rotation about the y-axis. (All rotations

are right-handed.) On the other hand, if we place the spacecraft upright and pointing along the x-axis,

then pitch is rotation about the −y-axis, yaw is rotation about the z-axis, and roll is rotation about the

x-axis.

[Picture omitted.]

6A. Start with a spacecraft upright and pointing along the y-axis. Draw what the

spacecraft looks like after it yaws π/2 and then pitches π/2. In a separate picture, draw

what the spacecraft looks like after it pitches π/2 and then yaws π/2.

6B. Again start with a spacecraft upright and pointing along the y-axis. The spacecraft

is going to yaw θ and then pitch φ. Find a matrix that expresses the yaw. Find a matrix

that expresses the pitch from the yawed position. Find a matrix that expresses the net

effect of the yaw followed by the pitch.
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