Regular Expressions CS 254, Spring 2009, Carleton College

This tutorial is about programming with regular expressions (REs). Specifically, it compares
“textbook” REs — the kind discussed in theoretical textbooks — to Python REs, which are
based on Perl’s and similar to many other programming languages’. It also gives you some idea
of the extra features that Python REs have. These features make REs an efficient and concise
way of solving (some) real programming problems. For example, many web applications rely
heavily on text processing, and much of the text processing is done by REs.

This tutorial is far from exhaustive. Here are some decent web resources.
e http://www.amk.ca/python/howto/regex/
e http://docs.python.org/library/re.html

e http://docs.activestate.com/komodo/4.4/regex-intro.html

1 Textbook REs vs. Python REs

In this section we implement our textbook’s REs in terms of Python’s REs, assuming a simple

alphabet of ¥ ={0,...,9,a,...,2z,A,...,Z}. Enter the following Python code.

import re
def matches(regexp, string):

return re.match(r’\A’ + regexp + r’\Z’, string) != None

This matches () function takes in two strings — the first being an RE and the second being a
string to match — and outputs either True or False, indicating a match or not. The function
does two things to mimic our textbook’s REs. First, it wraps the given RE in \A and \Z; together
these codes require the RE to match the entire string, instead of Python’s default behavior of
allowing matches with substrings. Second, the function simply returns True or False, instead
of Python’s default behavior of returning a matching object.

As far as the REs themselves go, the most significant difference between Python’s REs and

our textbook’s is that Python uses | where the textbook uses +. For example,
matches(’ (ablcld)*|ex’, ’ababcccab’)

is equivalent to asking whether (ab + ¢ + d)* + ex matches ababcccab. (It does.) Notice
that I've omitted all unnecessary spaces from the Python RE. Include spaces only if you really
mean them to be there; white space is taken seriously.

For the limited alphabet of ¥ = {0,...,9,a,...,2,A,...,Z} and the limited set of operations
provided by our textbook REs, this is all there is to say about Python REs. You should now be
able to translate anything from the textbook into Python.

Regular Expressions CS 254, Spring 2009, Carleton College

In moving beyond the textbook to serious programming problems we will find a number of
other Python RE features convenient. First, using | for + frees up the + metasymbol to act like

our book’s unary +, meaning “repeat 1 or more times”. For example,
matches(’ (alb)+c*’, ’aabaccc’)

returns True because there are 1 or more as and bs before 0 or more cs. Python REs also have a

7 metasymbol that indicates “repeat 0 times or 1 time, but no more”, an {n} code that indicates

“repeat exactly n times”, and an {m,n} code that indicates “repeat between m and n times”.
Another convenience is the character class concept. For example, [aeiouA-C3-7] is equiv-

alent to alelilolulAIBICI31415|6]7. We'll cover more character classes in a moment.

2 The Alphabet and the Infamous Backslashes

Python’s alphabet is much larger than just [0-9a-zA-Z]. I'm not sure, but I think it contains
all of ASCII and even all of Unicode. This means that you can access weird characters such as

the newline character. You typically enter a newline into a Python string like this:
mystring = ’After this sentence is a newline character.\n’

If you really want a string containing the two characters \ and n, then you have to escape the

backslash with another backslash:

mystring = ’After this sentence are two extra characters.\\n’
Another solution is to make a raw Python string:

mystring = r’After this sentence are two extra characters.\n’

In short, the backslash is special metasymbol in Python strings, but you can turn off its spe-
cialness by prefacing the string with r.

This is handy, because the backslash is also a metasymbol in REs. We have already seen that
\A and \Z in an RE indicate that the start and end of the string are to be matched. Another
special code is \w; it is the character class of all alphanumeric characters. Similarly, \d matches
decimal digits and \s matches whitespace characters. To match the backslash itself, you use \\.

So for example the Python code
re.match(r’\A\d{1,2}\\\d{1,2}X\\\d{2,4}\Z’, s) != None

returns True for strings s such as 9\11\2001 and 08\13\76. These are supposed to be dates;
obviously I've used backslashes instead of slashes just to illustrate my point. If I hadn’t used
a raw Python string, I’d’ve needed many more backslashes in there. (Aside: I'm typing this

document in IATEX, which also uses backslash for a metasymbol...)

Regular Expressions CS 254, Spring 2009, Carleton College

Now that we’ve discussed the alphabet we can talk about complementing character classes.
The construction [~a-g] describes all characters other than those in [a-g]. For a more com-

plicated example,
re.match(r’<a\s+href\sx=\sx"[""]+">’ s) != None

returns True for strings such as , as long as there’s at least one
non-" character between the two "s.

See the Python documentation for more special characters and character classes.

3 Beyond Returning True and False

A Python RE-matching function such as re.match() doesn’t just return whether the RE
matched the string; it tells us which parts of the RE matched which parts of the string. These
parts are called groups. They are delimited by (). For example,

re.match(’g*x([abl*)g*’, ’gggabaabbbgabaaaa’).groups()

returns (’abaabbb’,). Why? The RE matches just the substring gggabaabbbg; by default it
doesn’t insist on matching all the way to the end of the input string. In this substring the part
corresponding to the group ([ab]*) was abaabbb, so that was returned in the length-1 tuple of
results.

A sophisticated RE can contain multiple groups to extract multiple parts of the string; see
the documentation. You can even refer to groups within the regular expression, using the codes

\1, \2, etc. For example,
re.match(r’g+([abl+)g+\1g+’, ’gggabaabbbgabaabbbgggg’) .groups ()

returns (’abaabbb’,). Why? The group matches abaabbb, and this same substring is matched
again by the \1, so the whole RE matches. But only the group delimited by parentheses is
returned.

If you want to find all non-ovelapping substrings that match a given regular expression, try
re.findall (). For example, the following code returns all URLs from a given string of HTML.
Notice how the entire HTML anchor element is matched, but only the URL within that element
is returned, because only it is in a group. (This regular expression could be improved to be

case-insensitive.)
re.findall(r’<a\s+href\s*=\sx"([""]+)">’, htmlString)

Python strings come with a rudimentary split () method, but the RE library’s split () lets
you split according to any regular expression. In this simple example we split a string according

to white space.

Regular Expressions CS 254, Spring 2009, Carleton College

>>> re.split(r’\s+’, ’The lazy brown dog\nate\tthe quick silver fox.’)

[’The’, ’lazy’, ’brown’, ’dog’, ’ate’, ’the’, ’quick’, ’silver’, ’fox.’]
y g q

You can also use regular expressions to alter the contents of strings. Here’s a simple search-

and-replace.

>>> re.sub(r’French’, ’freedom’, ’These French fries are delicious.’)

’These freedom fries are delicious.’

This tutorial is just a start; there’s a lot more to learn about programming with REs. See

the online references/tutorials.

