
Here are some notes about the Kolmogorov complexity material that we’ve covered toward the

end of the course. A good reference is the textbook Introduction to the Theory of Computation

by Michael Sipser.

1. Introduction

All strings in these notes are taken over the alphabet {0, 1}. Consider these two strings:

01010101010101010101010101010101,

01100001010111101101001000001100.

Both have length 32, but the latter seems more complicated, because the former has an obvious

pattern — “repeat 01 16 times”. Our goal is to develop a theory of information complexity that

measures how much information is actually contained in a string. The basic idea is to come up

with a system for describing (compressing) strings, and then to define the information content

of a given string x to be the length of its shortest description.

Our default description system will describe strings x as strings M#w, where M is a Turing

machine, w is an input to M , and M outputs x when it is given the input w. In our initial

example, the string x = 01010101010101010101010101010101 could be described as M#w where

w = 01 and M implements “repeat 16 times”. The special symbol # is there just to delimit M

and w clearly.

Since we are using the alphabet {0, 1}, we must agree on an encoding of M#w as bits. Earlier

in the course, when we studied diagonalization, we agreed on a standard encoding of M and w

into bits. It remains to encode #. Here is one way. Let’s agree that # is the string 01. Define a

function double() that, given any string, returns the string with each bit doubled up to two bits.

For example, double(00101) = 0000110011. Then we can unambiguously encode M#w into bits

as double(M)01w. This is a bit wasteful, since it doubles the number of bits needed to store M .

One can imagine more sophisticated description systems that yield shorter descriptions, but we

don’t care much.

Before we state the key definitions, recall that lexicographic order is alphabetical order, with

short strings preceding longer strings. The lexicographic order of all bitstrings goes

ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111,

Definition 1.1. Let x be any string. The minimal description d(x) is the lexicographically

minimal string M#w such that M is a Turing machine, w is an input to M , and when M is

given w as input it halts with x on its tape. The Kolmogorov complexity K(x) is the length

|d(x)| of the minimal description.

2. Basic Results

Intuitively, because d(x) is the minimal description of x, you should think of it as the com-

pressed version of x. For this notion of compression to be useful, it should compress strings
1

Kolmogorov Complexity CS 254, Spring 2009, Carleton College

down to smaller strings. That is, one would hope that |d(x)| < |x| for all x. However, this is

not achievable. (See Lemma 3.3.) Some strings x have so little “pattern” that any attempt

to describe the pattern of x takes as much space as simply laying out x itself. To handle such

strings in our compression system, we could agree on a flag that indicates “the following string

is being given in raw form; don’t do anything to it”. Then any string x can be described in

|x| + |flag| bits — or less, if x can really be compressed. This is the basic idea behind the

following theorem.

Theorem 2.1. There exists a constant c such that for all strings x

K(x) ≤ |x|+ c.

Proof. Let M be a Turing machine that immediately halts. That is, M ’s output is always

identical to its input; M computes the identity function. Let c = |M |+ |#|. Then for any string

x, M#x is a description of x. Therefore K(x) ≤ |M#x| = |x|+ c. �

For any string x, the complexity of xx shouldn’t be much more than the complexity of x,

because you can describe xx by describing x and then saying “repeat it”. This is the basic idea

behind the following theorem.

Theorem 2.2. There exists a constant c such that for all strings x

K(xx) ≤ K(x) + c.

Proof. Let M be a Turing machine that, when given an input of the form N#w (where N is a

Turing machine and w is an input to N):

(1) Runs N on W to produce an output s.

(2) Repeats s on its tape, to produce a final output ss.

Let c = |M | + |#|. Then for any string x, M#d(x) is a description of xx. Therefore K(xx) ≤
|M#d(x)| = |d(x)|+ c. �

Similarly, describing xy shouldn’t be much harder than describing x and describing y. The

following theorem expresses this idea, but a factor of 2 creeps in due to the idiosyncrasies of our

encoding system. This factor can be reduced by a more clever choice of encoding, but it can

never be reduced to 1. (That’s an exercise for later.)

Theorem 2.3. There exists a constant c such that for all strings x and y

K(xy) ≤ 2K(x) + K(y) + c.

Proof. For any string w let double(w) be the doubling function defined above. Then we can

describe xy as M#double(d(x))01d(y) for a suitable Turing machine M . Namely, M scans its

input double(d(x))01d(y) until it finds the special code 01 after an even number of bits. The

bits preceding 01 are undoubled to produce d(x), which is decoded to produce x. The bits after
2

Kolmogorov Complexity CS 254, Spring 2009, Carleton College

01 are taken to be d(y), which is decoded to produce y. Finally x and y are concatenated on

M ’s tape and M halts. Let c = |M |+ |#|+ |01|. Then

K(xy) ≤ |M#double(d(x))01d(y)|

= 2|d(x)|+ |d(y)|+ |M |+ |#|+ |01|

= 2K(x) + K(y) + c.

�

3. Incompressibility

Now we make the connection between information complexity and compression explicit.

Definition 3.1. A string x is compressible by c if K(x) ≤ |x| − c. We say that x is incom-

pressible if it is not compressible by 1.

You would expect that d(x), being the minimal description of x, should be incompressible.

For if it were compressible, then there would exist a description of d(x) shorter than d(x) itself,

and this description of d(x) would yield a description of x that might be shorter than d(x). This

is correct, except that it ignores the inevitable overhead of the encoding system. The following

theorem makes it all precise.

Theorem 3.2. There exists a constant b such that for all strings x, d(x) is incompressible by b.

Proof. Let M be a Turing machine that on input N#w does the following steps.

(1) Run N on w.

(2) If the output of N is not of the form P#y, where P is a Turing machine and y is an

input for it, then reject.

(3) If the output of N is of the form P#y, then run P on y and halt with that output.

Let b = |M |+ |#|+ 1. Suppose (for the sake of contradiction) that x is a string such that d(x)

is compressible by b. Thus |d(d(x))| ≤ |d(x)| − b. But M#d(d(x)) is a description of x, and its

length is

|M |+ |#|+ |d(d(x))| ≤ (b− 1) + |d(x)| − b = |d(x)| − 1.

No description of x can have length less than d(x); this contradiction proves that the string x

cannot exist, and that proves the theorem. �

Earlier we mentioned that you can’t hope to compress every string. The following result

explains this in an extremely simple way.

Lemma 3.3. For every n ≥ 0 there exists an incompressible string x of length n.

Proof. Let n ≥ 0. There are 2n strings of length n. There are only 2n − 1 strings of length less

than n, which can describe at most 2n − 1 strings. Hence at least one string of length n cannot

be described by any shorter string. �
3

Kolmogorov Complexity CS 254, Spring 2009, Carleton College

If the preceding result disappointed you, steel yourself.

Theorem 3.4. The Kolmogorov complexity K is not computable.

Proof. Suppose (for the sake of contradiction) that K is computable. Let M be a total Turing

machine that on input x halts with K(x) on its tape. Use M to construct a total Turing machine

N that, on input n (regarded as a base-2 integer) outputs some string x satisfying K(x) ≥ n.

(N tries all strings in lexicographic order, using M to compute K for each, until it finds x with

K(x) ≥ n. The preceding lemma guarantees that this will happen for some x with |x| ≤ n.)

Let U be a universal Turing machine that on input L#w simulates L on w and halts with

tape equal to whatever L’s final tape is. Let m be any integer such that

m− log2 m > |U |+ |#|+ |N |+ |#|.

Finally, let x = N(m). Then U#N#m is a description of x. Its length is

|U#N#m| = |U |+ |#|+ |N |+ |#|+ log2 m,

because the integer m is represented in base 2. By the definition of m, this length is less than m.

Therefore K(x) < m. But the definition of N guarantees that x = N(m) has K(x) ≥ m. From

this contradiction we conclude that our initial assumption, that K is computable, was false. �

4. Our Definition Of Complexity Is Equivalent To Any Other

We have defined the information complexity K(x) of a bitstring x based on an encoding of x

into a Turing machine M and an input w to that Turing machine. It is natural to ask whether a

different notion of information complexity would yield different results. The following theorem

answers “no”; our default definition yields similar theorems to any other — just with different

constants.

To see this, let p : {0, 1}∗ → {0, 1}∗ be any computable function; this will be our decoder.

To say that it is computable is to say that there exists a total Turing machine Mp that, given

input y, halts with p(y) on its tape. Let dp(x) be the lexicographically minimal string such

that p(dp(x)) = x; that is, dp(x) is the minimal description of x, with respect to the description

system p. Let Kp(x) = |dp(x)|; this is the informational complexity of x with respect to the

description system p. (For example, our default encoding system amounts to the universal

Turing machine U , that on input y = M#w simulates M on w.)

Theorem 4.1. For any computable p : {0, 1}∗ → {0, 1}∗ there exists a constant c such that for

all strings x, K(x) ≤ Kp(x) + c.

Proof. Let p be given. Let Mp be a Turing machine that implements p. Let c = |Mp| + |#|.
Then Mp#dp(x) is a description of x. Its length is c + Kp(x). Thus K(x) ≤ Kp(x) + c. �

4

Kolmogorov Complexity CS 254, Spring 2009, Carleton College

5. Randomness And Incompressibility

Definition 5.1. A property of strings over Σ is a function f : Σ∗ → {T,F}. A property f

holds for almost all strings if

lim
n→∞

#{x : |x| = n, f(x) = F}
#{x : |x| = n}

= 0.

The following mathematical lemma shows that we can replace “=” with “≤” in the above

definition. Sipser uses this fact without proof. You may want to skip the proof on a first reading.

Lemma 5.2. Let f be a property that holds for almost all strings. Then

lim
n→∞

#{x : |x| ≤ n, f(x) = F}
#{x : |x| ≤ n}

= 0.

Proof. Let ε > 0. We wish to show that there exists N such that for all n ≥ N

#{x : |x| ≤ n, f(x) = F}
#{x : |x| ≤ n}

< ε.

For the sake of brevity, let Ln = #{x : |x| = n, f(x) = F}. Because f holds for almost all

strings, there exists an M such that for all n > M ,

#{x : |x| = n, f(x) = F}
#{x : |x| = n}

<
ε

2
.

That is, Ln < ε
22n for all n > M . Pick N large enough so that

M∑
i=0

Li <
ε

2
(
2N+1 − 1

)
.

Then for all n ≥ N

#{x : |x| ≤ n, f(x) = F} =
M∑
i=0

Li +
n∑

i=M+1

Li

<

M∑
i=0

Li +
n∑

i=M+1

ε

2
2i

<
ε

2
(
2N+1 − 1

)
+

ε

2
(2n+1 − 1)

≤ ε
(
2n+1 − 1

)
= ε #{|x| ≤ n}.

This proves the lemma. �

Intuitively, a string generated at random should have no pattern and should not be compress-

ible. The following theorem makes this intuition precise.

Theorem 5.3. Let f be a computable property that holds for almost all strings. Let b > 0.

Then f(x) = F for only finitely many strings that are incompressible by b.
5

Kolmogorov Complexity CS 254, Spring 2009, Carleton College

Proof. If f is false on only finitely many strings, then the theorem is obviously true. Hence-

forth assume that f is false on infinitely many strings. Denote these strings s0, s1, s2, . . . in

lexicographic order.

For any string x in the sequence s0, s1, s2, . . ., let ix be its index in the list. That is, ix is the

unique number such that six = x. Let M be a Turing machine that on input i, regarded as a

base-2 integer, outputs si. Then M#ix is a description of x.

Fix b > 0. By the lemma, there exists a large N so that for all n ≥ N

#{x : |x| ≤ n, f(x) = F}
#{x : |x| ≤ n}

<
1

2b+|M |+|#|+1
.

Using the fact that #{x : |x| ≤ n} = 2n+1 − 1, we have

#{x : |x| ≤ n, f(x) = F} <
2n+1

2b+|M |+|#|+1
= 2n−b−|M |−|#|.

If x is any string of length n ≥ N such that f(x) = F, then ix < 2n−b−|M |−|#| and |ix| ≤
n− b− |M | − |#|. This implies that

K(x) ≤ |M#ix| ≤ |M |+ |#|+ n− b− |M | − |#| = n− b.

So x is compressible by b.

We have shown that any string x of length at least N that fails f is compressible by b. There

are only finitely many strings of length less than N . Therefore only finitely many x that fail f

can be incompressible by b. �

6

