
Assignment 2 CS 254, Spring 2009, Carleton College

These five problems are due Wednesday at the start of class. Hand in Problems A-D on

paper; hand in Problem E electronically, as described below.

Problems A and B test whether you remember how to write basic proofs, as well as your

understanding of basic notation. Depending on your background, these problems may or may

not be easy. Let Σ be an alphabet of m > 0 symbols.

A. Using induction, prove for all n ≥ 0 that |Σn| = mn.

B. Let Σ≤n =
⋃n

k=0 Σk. Find a closed formula for
∣∣Σ≤n

∣∣.
In the textbook and in class we showed that regular languages are closed under intersection;

we then used that result to show that regular languages are closed under union. Now I want to

go the other way.

C. Prove that regular languages are closed under union, without using the fact that they are

closed under intersection. Then use closure under union to prove closure under intersection.

Problem D is about checking the validity of an HTML file. You don’t need to know HTML.

For simplicity, we allow only 12 HTML tags, and we ignore all of the text in the file other than

the tags. The HTML file is regarded as a string over the alphabet

Σ = {html, /html, head, /head, title, /title, body, /body, ul, /ul, li, a}.

The file is valid if and only if it meets the following six criteria. (These criteria may not exactly

match the real HTML standards, but they’re good enough for our purposes.)

• The file must begin with html and end with /html. These symbols cannot occur anywhere

else in the file.

• Immediately after html there must be a header, which begins with head and ends with

/head. These two tags cannot occur elsewhere.

• Immediately after the header there must be a body, which begins with body and ends with

/body. These two tags cannot occur elsewhere.

• The header must either contain no tags at all, or must contain a single title. A title begins

with title, ends with /title, and contains no other tags. These two tags cannot occur

elsewhere.

• The body may contain any number (0 or more) of unordered lists. An unordered list begins

with ul and ends with /ul. Inside the unordered list there may be any number of li tags

1

Assignment 2 CS 254, Spring 2009, Carleton College

and a tags (and nothing else), but if there are any tags inside an unordered list then the

first tag must be li. The li tag cannot occur outside an unordered list.

• The body may also contain any number of a tags outside any unordered lists.

D. Draw a DFA that accepts valid HTML and rejects invalid HTML, as just defined. To

keep your drawing clear, please adopt the following convention. If a state q has no outgoing

transition arrow for a symbol a, then it is understood that the machine rejects its input when

it is in state q and sees symbol a.

For our final problem we need to agree on a uniform way of describing DFAs in Python. Let

us adopt the convention that the states of a DFA are numbered q0, q1, . . . , qn−1, where n is the

number of states. Similarly, let’s agree that the symbols are numbered a0, a1, . . . , am−1. Then

one can specify a DFA in Python by the following data.

1. A list delta of lists, such that each list in delta has the same length. Let n be the length

of delta and m the length of each list in delta; these are the number of states and the

number of symbols, respectively. This delta is the table for the DFA’s transition function

δ. Explicitly, δ(qi, aj) is the state corresponding to the integer delta[i][j].

2. A number s belonging to the set {0, 1, . . . , n− 1} to indicate the start state.

3. A list F of numbers from {0, 1, . . . , n− 1}, with no repeats, to indicate the final states.

We have not specified the set Q of states or the alphabet Σ, but we know how big each is from

the structure of delta, and we know how to compute with them because the states and symbols

are uniquely identified as numbers in {0, 1, . . . , n− 1} and {0, 1, . . . ,m− 1}, respectively. Thus

the data delta, s, and F encode everything essential to the DFA.

The input string to a DFA on m symbols shall be represented in Python as a list of numbers

from the set {0, 1, . . . ,m − 1}. For example, the string a3a3a1a0a5 shall be represented as

[3, 3, 1, 0, 5]. Finally, our Python DFA will output True or False rather than Yes or No, because

the former are more Pythonic.

E. In a file dfa.py, write a Python function dfa that simulates a given DFA on a given input.

That is, dfa takes in four arguments — delta, s, F, and input — and outputs either True or

False, according to whether the DFA described by delta, s, F would output True or False

when given the input input. Include in your file at least two test cases. I suggest that you use

examples from class, such as detecting whether the number of 0s in a bitstring is divisible by

3 and detecting whether an integer given in base-2 is divisible by 5. Hand in your file on the

COURSES file server, either manually (navigate to this course, find your hand-in folder, and

drop it there) or via the hsp program.

2

