Exam 1 CS 201, Fall 2008

You have 70 minutes.

Show your work and explain all of your answers. Good work often earns partial credit. A correct

answer with no explanation often earns little or no credit.

If you are asked to write code but you do not know the exact Python required, then try to write
code that is approximately correct. If you think that your code does not demonstrate that you
understand the solution, then describe your idea in English as well. Be precise enough that I

cannot misinterpret your solution.

If you have no idea how to solve a problem, or if you have forgotten a key concept that you
think you need to know, you may ask me for a hint. The hint will cost you some points (to be

decided unilaterally by me as I grade your paper), but it may help you earn more points overall.

Good luck.



Exam 1 CS 201, Fall 2008

1. To refresh your memory, UnorderedList has methods isEmpty (), length(), add (), search(),
and remove (), in addition to the constructor. In our implementation from class we had to re-
compute the length every time the user asked for it, which was inefficient. Eric came up with
the idea of keeping track of the length as items were added and removed from the list; then we
could just return the current length whenever asked.

A. Write a subclass of UnorderedList called FasterUnorderedList that uses Eric’s sugges-

tion. (If you subclass well, then you do not need to write much code.)



Exam 1 CS 201, Fall 2008

B. How would the abstract data type (ADT) specification for FasterUnorderedList differ

from that for UnorderedList?

2. A counterintuitive aspect of the radix sort we’ve studied is that it sorts by digits from right
to left, even though the left-most digits are the most significant. To correct this “defect” 1
altered the code — only a few lines needed changing — to sort by digit left-to-right instead
of right-to-left. (To understand this, it is helpful to assume that all numbers are of the same

length; i.e. shorter numbers have leading 0s.) Here is its output:

unsorted:

[32, 127, 5, 3456, 6, 1, 99, 245]
sorting...

[32, 127, 5, 6, 1, 99, 245, 3456]
[32, 5, 6, 1, 99, 127, 245, 3456]
[5, 6, 1, 127, 32, 245, 3456, 99]
[1, 32, 5, 245, 6, 3456, 127, 99]
sorted:

[1, 32, 5, 245, 6, 3456, 127, 99]

Is this thing working as I described? Why don’t I end up with a sorted list? Why does the

standard radix sort start with the least significant digits? Discuss.



Exam 1 CS 201, Fall 2008

3. The Collatz function is defined recursively by the following Python code. In the right margin
of this page, from the bottom of the page up, draw the call stack for collatz(6) when it is at

its deepest. On the rest of this page, write an iterative version of collatz().

def collatz(n):
if n ==
return n
else:
if n % 2 == 0:
return collatz(n / 2)
else:

return collatz(3 * n + 1)



Exam 1 CS 201, Fall 2008

4. In our radix sort function we used the Python operator %, which computes the remainder
when one integer is divided by another. For example, 3456 % 100 returns 56, 25 % 4 returns
1, and 36 % 6 returns 0. In this problem you will write this remainder function yourself. Let’s
just call it remainder (). It takes in two positive integers a and b, and returns the remainder
for a divided by b. So remainder (25, 4) returns 1. One approach is to repeatedly subtract 4
from 25 until you have the remainder; how do you know when that is?

A. Write an iterative version of remainder () that uses this repeated subtraction idea.

B. Write a recursive version of remainder () that uses repeated subtraction.

C. Describe the running time of either function using big-O notation.



Exam 1 CS 201, Fall 2008

5. We've discussed using queues for scheduling jobs on a printer and tasks on a processor. In
Real Life situations we don’t always want all tasks to be scheduled fairly; we want the ability
to specify that some jobs have priority over others, so that they get handled first. (Jobs that
have equal priority should be handled in a FIFO manner.) Let us assume that every item that
will be put in our queue responds to a priority() message that returns its assigned priority
(an integer, say). So, given an item item, its priority is item.priority().

Write enqueue () and dequeue () for this new kind of queue. Also describe the complexity

of your enqueue () and dequeue() using big-O notation.



