
Elementary Group Theory For Algebraic Topology Math 354, Winter 2008

This is a quick survey of some important elementary concepts of group theory, to prepare

students for the groups that show up in Munkres’ Topology (2nd ed), starting in Section 52.

Groups And Subgroups
In abstract algebra, a group is a set equipped with an operation that obeys a few essential

algebraic rules. Formally, a group consists of a set G, a distinguished element e ∈ G called the

identity, and a function m : G×G→ G, usually written like a multiplication operation

m(g1, g2) = g1 · g2,

that satisfies the following three conditions.

• Associativity: For any g1, g2, g3 ∈ G, (g1 · g2) · g3 = g1 · (g2 · g3).

• Identity: For any g ∈ G, e · g = g · e = g.

• Inverses: For any g ∈ G there exists an inverse, denoted g−1, such that g ·g−1 = g−1 ·g = e.

It is easy to prove for any g that g−1 is unique,
(
g−1

)−1 = g, (g1 · g2)−1 = g−1
2 · g

−1
1 , etc. Notice

that commutativity g1 · g2 = g2 · g1 is not required of groups; groups that enjoy this additional

property are called commutative or Abelian. If G is a group and H a subset of G that itself

forms a group under the same operation, then we say that H is a subgroup of G.

Example: The nonzero real numbers R 6=0 form a commutative group under ordinary multi-

plication, with 1 ∈ R 6=0 being the identity. The positive real numbers R>0 form a subgroup.

Example: Let n be a positive integer and GLn the set of all n×n real matrices with nonzero

determinant. Then GLn is a group under matrix multiplication (because nonzero determinant

guarantees an inverse), called the general linear group. Notice that GL1 is just R 6=0. For n > 1,

GLn is not commutative.

In general, there are many groups of real and complex matrices under multiplication that

play prominent roles throughout mathematics and physics. They are simultaneously algebraic

objects (groups) and geometric objects (smooth manifolds); such hybrids are known as Lie

groups, and the matrix groups are called the classical Lie groups.

Example: The integers Z form a commutative group under addition with identity 0 ∈ Z.

That is, we define the group operation by g · h = g + h. The identity is 0, and g−1 = −g. (One

must remember that · is abstract; it does not always mean “multiplication” in any traditional

sense.) Similarly, the rationals Q and the reals R form commutative groups under addition;

so does Rn, under vector addition. The integers Z do not form a group under multiplication,

because no integers other than ±1 have integer inverses.

Example: Let X be any set and F the set of all bijections f : X → X. Then F is a group

under function composition, with the identity being the identity function. For instance, we can
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view an n× n real matrix as a function Rn → Rn, with matrix multiplication corresponding to

function composition; then GLn is a subgroup of the group of bijections of Rn.

Products and Quotients
If G and H are two groups, then the Cartesian product G×H of sets comes with a natural

group structure given by

(g1, h1) · (g2, h2) = (g1 · g2, h1 · h2).

(Remember that the · on the left is for G×H, the first · on the right is for G, and the second ·
on the right is for H.) This G×H is called a product group. The identity element is (e, e), and

(g, h)−1 = (g−1, h−1).

Example: If R is the real numbers under addition, then R× R is R2 under vector addition.

We say that a subgroup H of G is normal if for any g ∈ G and h ∈ H, g · h · g−1 ∈ H.

If G is commutative, then all of its subgroups are normal. Given a normal subgroup H of G,

define an equivalence relation on G by declaring g1 ∼ g2 if g1 · g−1
2 ∈ H. Let [g] ⊆ G denote

the equivalence class of g ∈ G, and let G/H denote the set of equivalence classes. Define an

operation · on G/H by

[g1] · [g2] = [g1 · g2].

This operation is well-defined and makes G/H a group, called a quotient group.

Example: Let n be a positive integer, Z the integers under addition, and

nZ = {. . . ,−2n,−n, 0, n, 2n, . . .}

the subgroup of integers divisible by n. Since Z is commutative, nZ is a normal subgroup. Two

integers g1, g2 are equivalent iff g1−g2 is divisible by n. There are n equivalence classes, namely

[0], [1], . . . , [n − 1]. The group operation on these equivalence classes is essentially addition

modulo n; for example, if n = 12 then [5] + [9] = [14] = [2]. This group Z/nZ is commutative.

Example: Let Z/nZ∗ ⊆ Z/nZ denote the subset consisting of those [g] such that g and n

share no prime factors. Then Z/nZ∗ forms a commutative group under multiplication modulo

n. Although Z/nZ∗ is a subset of Z/nZ, it is not a subgroup because the group operations are

different.

Homomorphisms
If G and H are two groups, then a homomorphism φ : G → H is a function that respects

the group operations on G and H, in that

φ(g1 · g2) = φ(g1) · φ(g2).
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(Remember that the · on the left is for G and the · on the right for H.) An isomorphism

is a bijective homomorphism. One can show that if φ is an isomorphism, then φ−1 is also

a homomorphism and hence an isomorphism. The composition of two homomorphisms is a

homomorphism, and the composition of two isomorphisms is an isomorphism. We say that G

and H are isomorphic, written G ∼= H, if there exists an isomorphism between them; this defines

an equivalence relation on groups.

Example: The exponential function exp is a homomorphism from the reals R under addition

to the positive reals R>0 under multiplication, since exp(x1 + x2) = exp(x1) exp(x2). It is

bijective, so it is an isomorphism.

Example: The determinant function det : GLn → R 6=0 is a homomorphism, since det(AB) =

det(A) det(B). It is surjective, but it is not injective for n > 1.

Example: (R× R)× R is isomorphic to R3 under vector addition, by ((x, y), z) 7→ (x, y, z).

If φ : G → H is any homomorphism, then the image φ(G) ⊆ H is a subgroup of H. Define

the kernel of φ to be the subset

kerφ = φ−1(e) ⊆ G

of G that is sent to e ∈ H by φ. It turns out that kerφ is a normal subgroup of G.

Kernels, quotients, and homomorphisms are closely related. A homomorphism is injective if

and only if its kernel is {e}. If H is a subgroup of G, then the inclusion map H ↪→ G defined by

h 7→ h is an injective homomorphism. If H is a normal subgroup of G, then the quotient map

G→ G/H that sends g 7→ [g] is a surjective homomorphism with kernel H. If φ : G→ H is any

homomorphism, then kerφ is normal, and so we can form the quotient G/ kerφ. The map

ψ : G/ kerφ→ φ(G)

described by ψ([g]) = φ(g) is well-defined and in fact an isomorphism. In summary, any homo-

morphism φ : G→ H can be written as a composition of homomorphisms

G→ G/ kerφ
∼=−→ φ(G) ↪→ H,

where the first map is surjective, the second bijective, and the third injective.

Some jargon now: A surjective homomorphism is called an epimorphism and an injective

homomorphism a monomorphism. A homomorphism from a group G to itself is called an

endomorphism of G; if it is an isomorphism as well, then it is called an automorphism. Notice

that the set of automorphisms of G forms a group under function composition. Automorphism

groups of various kinds are found throughout mathematics.
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