
1. Connectedness And Liftings
Part B of this problem is a claim that we used in our lifting arguments in class but did not

prove. I’m asking you to prove it now.

A. Let X be a connected topological space. Let {U1, . . . , Un} be an open cover of X (with

the Ui are nonempty and distinct). Suppose that the set {U1, . . . , Un} is partitioned into two

nonempty disjoint sets {V1, . . . , Vm}, {W1, . . . ,W`}. Prove that there is some Wk that intersects

the union
⋃m
j=1 Vj .

Answer: Suppose not. Then
⋃
Wi is disjoint from

⋃
Vj . So these two sets are disjoint,

nonempty, and open, and together they cover X. But this is impossible, since X is connected.

B. Suppose that p : E → B is a covering space. Let X be compact and connected and

f : X → B continuous. Show that f(X) ⊆ B can be covered by finitely many evenly covered

open sets U1, . . . , Un ⊆ B such that, for all k = 2, . . . , n,

f(X)
⋂
Uk
⋂(

k−1⋃
i=1

Ui

)
6= ∅.

Answer: Since every point in B has some evenly covered neighborhood, B can be covered by

evenly covered open sets, and so can f(X) ⊆ B. But f(X) is compact, since X is compact and f

is continuous. So f(X) can be covered by finitely many evenly covered open sets U1, . . . , Un ⊆ B.

Then {f−1(U1), . . . , f−1(Un)} is a finite open cover of X; by discarding empty or repeated sets,

we may assume that the f−1(Ui) are nonempty and distinct.

We will now reorder these sets f−1(Ui) so that each one intersects the union of the previous

ones. Pick any f−1(Ui) to start; call it V1. Then, by Part A, one of the other open sets f−1(Ui)

intersects V1; call it V2. Then, again by Part A, there is some other f−1(Ui) that intersects

V1
⋃
V2; call it V3. Continue in this manner until V1, . . . , Vn have been chosen.

Relabel the Ui so that Vi = f−1(Ui). Then, for any k ≥ 2, Vk = f−1(Uk) has a nonempty

intersection with the set
k−1⋃
i=1

Vi =
k−1⋃
i=1

f−1(Ui),

and so

f(X)
⋂
Uk
⋂(

k−1⋃
i=1

Ui

)
6= ∅.

2. Covering Spaces
Recall that an n-manifold is a Hausdorff space in which each point has a neighborhood that

is homeomorphic to an open subset of Rn. (This is the definition we have always used in class;

it appears to be slightly weaker than the definition given on page 225.) Let p : E → B be a

covering space. For the following two questions, prove or give a counterexample.

A. If B is an n-manifold, then must E also be an n-manifold?

Answer: Yes, E must be an n-manifold. First let us check Hausdorffness. Let e1, e2 be two

distinct points in E. Then either p(e1) = p(e2) or not.
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If p(e1) = p(e2), then e1 and e2 are distinct preimages of a single point b ∈ B. Let U be an

evenly covered neighborhood of b. Then e1, e2 lie in distinct slices V1, V2 of E over U . By the

definition of a covering map, V1 and V2 are open in E and disjoint. So V1 and V2 are disjoint

neighborhoods of e1 and e2.

If p(e1) 6= p(e2), then p(e1) and p(e2) have disjoint neighborhoods W1 and W2, because B

is Hausdorff. There are also evenly covered neigborhoods U1, U2 about p(e1), p(e2) respectively.

Then U1
⋂
W1 and U2

⋂
W2 are disjoint evenly covered neighborhoods of p(e1) and p(e2), and

p−1(U1
⋂
W1) and p−1(U2

⋂
W2) are disjoint neighborhoods of e1, e2.

So E is Hausdorff. Now we check the condition that every point in E has a neighborhood

homemorphic to an open set in Rn. Let e ∈ E. Let U be an evenly covered neighborhood of

p(e) and W a neighborhood of p(e) that is homeomorphic to an open set in Rn. Then U
⋂
W is

an evenly covered neighborhood of p(e) that is also homeomorphic to an open set in Rn. Since

p is a covering map, p−1(U
⋂
W ) is a disjoint union of open sets Vα ⊆ E, each of which is

homeomorphic to U
⋂
W and hence to an open set in Rn. The original point e is an element of

one of these Vα; that Vα is the desired neighborhood.

B. If B is simply connected and E is path-connected, then must E also be simply connected?

Answer: Yes, E must be simply connected. Let e ∈ E and let [f ] ∈ π1(E, e) be a loop class.

Then p ◦ f is a loop in B. But B is simply connected, so there exists a path homotopy between

p ◦ f and the constant loop at p(e). By Lemma 54.2 the path homotopy lifts to one between f

and the constant loop at e. (See also Theorem 54.3.) Thus f is nulhomotopic, π1(E, e) is trivial,

and E is simply connected.

Remark: This is essentially a rephrasing of Theorem 54.6a, which is proved using the same

argument.

3. Malicious Art Curation
A. In a cartoon like those above, show how to arrange the cable so that while both nails are in

the wall the painting stays up, but if either nail comes out of the wall then the painting crashes

to the floor. (The only freedom you have is in how the cable is arranged. You are not allowed to

change how it is attached to the painting, you are not allowed to knock holes in the wall, etc.)

Answer: Starting at the painting, draw a cable that goes up between the nails, goes around

the left nail, goes straight across the wall until it is below the right nail, goes around the right

nail, goes diagonally across the wall until it is below the left nail, goes around the left nail, goes

straight across the wall until it is above the right nail, goes around the right nail, and returns to

the painting. In short, if a is a loop based at x (the attachment point on the painting) that goes

once around the left nail counterclockwise, and b is a loop based at x that goes once around the

right nail counterclockwise, then the loop I’m going for is path-homotopic to abāb̄.

Remark: This is not the only answer.

B. What does this have to do with our course? Equate the wall with R2, if you like.

2



Exam 2 Answers Math 354, Winter 2008

Answer: The wall is R2. Let p1 ∈ R2 be the location of the left-hand nail and P1 = R2−{p1}
the rest of the wall. Define p2, P2 similarly for the other nail. Let i1 : P1

⋂
P2 ↪→ P1 and

i2 : P1
⋂
P2 ↪→ P2 be the inclusion maps. When the painting is hanging, the cable forms a loop

in P1
⋂
P2. When nail 1 comes out of the wall, the loop suddenly finds itself in P2, and it slips

free of nail 2 if it is nulhomotopic in P2. When nail 2 comes out, the loop slips free of nail 1 if

it is nulhomotopic in P1.

So the problem asks us to find a loop f in P1
⋂
P2 such that i1 ◦f is nulhomotopic and i2 ◦f is

nulhomotopic. In other words, we wish to find [f ] ∈ π1(P1
⋂
P2, x) such that (i1)∗[f ] ∈ π1(P1, x)

and (i2)∗[f ] ∈ π1(P2, x) are both trivial.

Remark: P1
⋂
P2 is homotopy-equivalent to the figure-eight space. As we will see shortly in

this course, the fundamental group of the figure-eight is the free group on the two generators a

and b mentioned above. The effect of (i1)∗ is to send b to 1, and the effect of (i2)∗ is to send a

to 1. Thus

(i1)∗[abāb̄] = [a1ā1] = [aā] = 1,

and (i2)∗[abāb̄] = 1 symmetrically.

4. Compact-Open Topology
For any topological spaces X and Y , let C(X,Y ) denote the set of continuous functions

f : X → Y . Endow C(X,Y ) with the compact-open topology described on pages 285-286 of your

book. (When X = R this is similar to, but not quite the same as, Exam 1 #5.)

For the remainder of this problem, Y is any compact, Hausdorff topological space.

A. For any spaces X and Z, define a map

m : C(X,Y )× C(Y, Z)→ C(X,Z)

by m(f, g) = g ◦ f . Prove that m is continuous.

Answer: We wish to show that the preimage of any open set in C(X,Z) is open in C(X,Y )×
C(Y,Z). Let C ⊆ X be compact and U ⊆ Z be open, so that S(C,U) is a subbasis element for

C(X,Z). It suffices to show that m−1(S(C,U)) is open. Let (f, g) ∈ m−1(S(C,U)). It suffices

to construct a basis element S(C,W )× S(D,U) in C(X,Y )× C(Y, Z) such that

(f, g) ∈ S(C,W )× S(D,U) ⊆ m−1(S(C,U)).

(For then any point in m−1(S(C,U)) has a neighborhood contained in m−1(S(C,U)), and it

follows that m−1(S(C,U)), being the union of all of these neighborhoods, must be open.)

To begin, (f, g) ∈ m−1(S(C,U)) means that f : X → Y and g : Y → Z are continuous and

f(C) ⊆ g−1(U). Since g is continuous, g−1(U) is open in Y . Since f is continuous, f(C) is

compact in Y (by 26.5). But every compact subset of a Hausdorff space is closed (by 26.3),

so f(C) is closed. Thus f(C) and Y − g−1(U) are disjoint closed subsets of Y . Now Y , being

compact and Hausdorff, is also normal (by 32.3). Thus there exist disjoint open sets W and V

in Y such that f(C) ⊆ W and Y − g−1(U) ⊆ V . Let D = Y − V . Then D is a closed subset
3
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of a compact space, so it is compact (by 26.2). Therefore S(C,W )× S(D,U) is an open set in

C(X,Y )× C(Y,Z).

Because f(C) ⊆ W we have f ∈ S(C,W ). Also, D ⊆ g−1(U), so g ∈ S(D,U). Thus

(f, g) ∈ S(C,W )× S(D,U). Finally, let (f ′, g′) ∈ S(C,W )× S(D,U). Then, because W ⊆ D,

g′(f ′(C)) ⊆ g′(W ) ⊆ g′(D) ⊆ U.

Thus (f ′, g′) ∈ m−1(S(C,U)) and S(C,W )× S(D,U) ⊆ m−1(S(C,U)), as desired.

B. For any space Z, define a map e : Y × C(Y, Z) → Z by e(y, g) = g(y). Using part A —

not some other method — prove that e is continuous. (Free hint: What if X were the one-point

space {p}?)

Answer: Let X = {p} be the one-point space. The basic idea is that C(X,Y ) ∼= Y , C(X,Z) ∼=
Z, and the composition map m from Part A reduces to the evaluation map e : Y ×C(Y,Z)→ Z.

First, for any point y ∈ Y define gy : X → Y by gy(p) = y. Then the function

G : Y → C(X,Y )

defined by G(y) = gy is a bijection. We show that G is continuous. Let S(C,U) ⊆ C(X,Y )

be a subbasis element. Then C is either ∅ or X. (These are the only two subsets of X, and

they are both finite and hence compact.) Then G−1(S(∅, U)) = Y (since, for any y ∈ Y ,

gy(∅) = ∅ ⊆ U) and G−1(S(X,U)) = U (since gy(X) ⊆ U ⇔ y ∈ U). Thus G−1(S(C,U)) is

open and G is continuous. Now we show that G−1 is continuous. We have already seen that

G−1(S(X,U)) = U for any open U ⊆ Y . Since G is a bijection, we have G(U) = S(X,U),

which is open in C(X,Y ). Thus G carries open sets in Y to open sets in C(X,Y ), so G−1 is

continuous. In summary, G : Y → C(X,Y ) is a homeomorphism. Similarly, defining hz(p) = z

gives a homeomorphism H : Z → C(X,Z).

Now e : Y × C(Y,Z)→ Z equals the composition

Y × C(Y, Z) G×id−→ C(X,Y )× C(Y,Z) m−→ C(X,Z) H
−1

−→ Z,

because e(y, f) = f(y) and

H−1(m((G× id)(y, f))) = H−1(m(fy, f)) = H−1(f ◦ fy) = f(y).

Therefore e, being the composition of continuous functions, is continuous.

C. Let G be the set of homeomorphisms from Y to Y . Then G is a group under composition.

Also, G is a subset of C(Y, Y ), so it is a topological space, under the subspace topology from

the compact-open topology on C(Y, Y ). Prove that G is a topological group, as defined on page

145.

Answer: We must show three things: the T1 condition, that the group operation n : G×G→ G

defined by n(g1, g2) = g2◦g1 is continuous, and that the inversion i : G→ G defined by i(g) = g−1

is also continuous.

First, let g1, g2 be distinct points in G. So g1 and g2 are homeomorphisms of Y , and they differ

in value at at least one point: g1(y) 6= g2(y) for some y ∈ Y . Since Y is Hausdorff, there exist
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disjoint neighborhoods U1, U2 of g1(y), g2(y) in Y . Notice that {y} ⊆ Y is compact because it

is finite, that g1 is an element of S({y}, U1), and that g2 is not an element of S({y}, U1). Thus

we have found a neighborhood S({y}, U1) of g1 that does not contain g2. Since we can do this

for any g1 6= g2, this proves that G− {g2} is open and {g2} is closed. Since g2 was arbitrary, G

is T1.

Second, notice that n : G × G → G is the restriction of m : C(Y, Y ) × C(Y, Y ) → C(Y, Y ),

which is continuous by Part A. So n is continuous.

Third, let S(C,U) be a subbasis element for G. (It is actually a subbasis element for C(Y, Y );

I leave it to you to intersect open sets in C(Y, Y ) with G.) We wish to show that i−1(S(C,U))

is open in G. For starters, since U is open, Y − U is closed and hence compact (by 26.2); also,

since C is compact, C is closed (by 26.3) and hence Y −C is open. Therefore S(Y −U, Y −C)

is a subbasis element. Now, among homemorphisms f : Y → Y ,

f(C) ⊆ U

⇔ C ⊆ f−1(U)

⇔ Y − C ⊇ Y − f−1(U)

= f−1(Y − U).

Therefore f is an element of S(C,U) if and only if i−1(f) = i(f) = f−1 is an element of

S(Y − U, Y − C). Thus i−1(S(C,U)) = S(Y − U, Y − C), which is open, and i is continuous.

5


