
ROTATIONS

JOSHUA R. DAVIS

Abstract. We review rotations of two- and three-dimensional space,
from basic algebraic manipulation to interpolation and splines (not fin-
ished yet). Three different representations of rotations are used: special
orthogonal matrices, Euler angles, and quaternions. Methods for con-
verting among these representations are given. The treatment is suitable
for anyone who has studied linear algebra.

1. Introduction

Rigid-body rotations appear in many scientific problems, including phys-
ical simulations, computer graphics (drafting, geographical information sys-
tems, video games), and geology. These uses ultimately rely on a small set
of fundamental mathematical operations with rotations.

• Given some unrotated vectors and some rotated ones, infer the ro-
tation that took the former to the latter.
• Given a rotation T and a vector (or point) ~v, compute the rotated

vector T (~v).
• Given two rotations T and S, describe the composed rotation S ◦ T

that corresponds to the combined effect of T followed by S.
• Given a rotation T , invert it, meaning compute the rotation T−1

that undoes T .
• Suppose we have a rotation T . Imagine that ~v is the position of

some object at time t = 0, and that T (~v) is the position at time
t = 1. What is the position at time t = 1/2? It is S(~v), where S is
some rotation that is “halfway” between I and T . How do we find
S? More generally, can we find a path of rotations from I to T? Can
we do it in a canonical (i.e. standard, objective) way?

What is the best way to represent the rotations concretely, so that we
may perform such computations with them as simply as possible? We seek
simplicity not just because we’re lazy, but also because we’re really lazy —
we want computers to do the calculations for us, and the computer programs
need to be fast, reliable, and numerically robust. In this paper we try three
different descriptions:

• Special orthogonal matrices, meaning matrices M such that M> =
M−1 and detM = 1, are convenient for all kinds of computation,
except perhaps interpolating paths.

1

2 JOSHUA R. DAVIS

• Euler angles, which describe how to rotate about three fixed coor-
dinate axes, are not convenient at all for computation, despite their
popularity.
• Quaternions, which are like “complex complex numbers”, take some

getting used to, but they are convenient for all kinds of computation.
All of these systems are theoretically equivalent, in that they describe the
same set of rotations. Methods for converting among them are given in
this paper. Rotations of two-dimensional space are sufficiently simple that
the conversion process is vacuous and no system is significantly better than
the others. However, for expository reasons it is desirable to treat two
dimensions thoroughly before delving into the complexity of rotations in
three dimensions. Along the way some mathematical jargon is introduced,
just so that readers who try to learn more from math books will know what
to look for.

2. Rotations in General

In this section we define an abstract notion of rotation of R2 or R3 (or
any Rn, for that matter). This abstract treatment has the benefit of stating
the most basic and useful properties of rotations without tying us down to
any particular way of writing them. The drawback is that we lose sight
of the tactile experience of turning an object around an axis through some
angle. But that axis-angle notion of rotation in R3 is surprisingly difficult
to describe mathematically, until you stumble upon the right system. More
on that in a moment.

A rotation of Rn is a linear transformation T : Rn → Rn that preserves
the dot product and preserves orientation. Explicitly this means that for
any vectors ~v, ~w ∈ Rn and any scalar c ∈ R,

(1) T (~v + ~w) = T (~v) + T (~w),
(2) T (c~v) = cT (~v),
(3) T (~v) · T (~w) = ~v · ~w, and
(4) detT > 0.

The dot product implies notions of angle and length, as follows. The length
|~v| of a vector ~v is given by

|~v| =
√
~v · ~v.

The angle θ between ~v and ~w satisfies ~v · ~w = |~v||~w| cos θ; in other words,

θ = arccos
(
~v · ~w
|~v||~w|

)
.

Because any rotation T preserves the dot product, it follows that T preserves
lengths and angles:

|T (~v)| = |~v|,

arccos
(
T (~v) · T (~w)
|T (~v)||T (~w)|

)
= arccos

(
~v · ~w
|~v||~w|

)
.

ROTATIONS 3

One can also deduce that a rotation preserves area/volume/etc. In terms
of linear algebra, this means that its determinant is ±1. But we require a
rotation to have positive determinant, so its determinant must be 1. Linear
transformations with negative determinant involve reversals of orientation
(reflections, or flips of space), and we don’t want those. In short, the notion
of rotation we’ve laid out here transforms space without distorting or flipping
it in any way.

If T and S are two rotations, then the combined effect of T followed by
S is the composition of functions S ◦ T . We have to write it in this order
because the vector being rotated is written on the right:

(S ◦ T)(~v) = S(T (~v)).

Since both T and S are linear, so is S ◦ T ; since both preserve the dot
product, so does S ◦ T ; since both have positive determinant, so does S ◦ T .
This shows that the composition of two rotations is a rotation.

Pause for a moment to consider that fact: The combined effect of a rota-
tion T followed by another rotation S is itself a rotation. This is not at all
obvious, if one thinks of rotations in terms of axes and angles. If you rotate
R3 about one axis, and then rotate it again about some other axis, then the
net effect is a rotation about some third axis? Really? Which one? How
much have you rotated about it?

Before we get to any concrete description of rotations, let’s finish laying
out their basic properties in the abstract. The set of all rotations of Rn

forms a group under composition, which simply means that the following
four properties are satisfied.

• Closure: If T and S are rotations, then so is S ◦ T , as we’ve already
seen.
• Associativity: For any rotations T , S, and U , U ◦(S◦T) = (U ◦S)◦T .

This property is always enjoyed by compositions of functions; it just
says that

(U ◦ (S ◦ T))(~v) = U(S(T (~v))) = ((U ◦ S) ◦ T)(~v).

• Identity: The identity I — the linear transformation that does noth-
ing, as in I~v = ~v — is trivially a rotation. For any rotation T ,
I ◦ T = T ◦ I = T .
• Inverses: Any rotation T is invertible, and its inverse T−1 is also a

rotation. The inverse satisfies T ◦ T−1 = T−1 ◦ T = I.
The rotations of R2 commute with each other, meaning S ◦ T = T ◦ S.
However, the rotations of R3 (and higher Rn) do not commute. Order
matters. This is especially significant when inverting compositions: The
inverse of S ◦ T is T−1 ◦ S−1, not S−1 ◦ T−1.

We need to establish two conventions. First, a vector in Rn is an n × 1
column matrix. Second, we always measure angles in radians. Radians
enjoy a number of inherent mathematical properties that other systems of
angle measurement (degrees, gradians, etc.) do not. For this reason, most

4 JOSHUA R. DAVIS

programming languages (Excel, MATLAB, Mathematica, C, etc.) measure
angles in radians by default. To convert from degrees to radians, multiply
by 2π/360◦. For example 360◦ = 2π, 180◦ = π, and 90◦ = π/2. To convert
from radians to degrees, divide by 2π/360◦. If you like, just view the symbol
◦ as the unitless constant 2π/360 ≈ 0.0174533.

3. Rotations as Special Orthogonal Matrices

Rotations are linear transformations, which are the province of linear
algebra. In linear algebra, one typically represents linear transformations as
matrices, so that will be our first approach to describing rotations.

An n×n matrix M with real entries is said to be orthogonal if its inverse
equals its transpose: M−1 = M>, or, in other words,

MM> = M>M = I.

Transposes are relevant to us because the dot product of any two vectors ~v
and ~w can be written in terms of matrix multiplication like this:

~v · ~w = ~v> ~w.

If we multiply ~v and ~w by an orthogonal matrix M , then

(M~v) · (M ~w) = (M~v)>M ~w = ~v>M>M ~w = ~v>I ~w = ~v> ~w = ~v · ~w.
That is, multiplication by an orthogonal matrix preserves the dot product.
Thus it also preserves lengths, angles, and area/volume/etc. Its determinant
is ±1. If it has determinant 1 then it’s called a special orthogonal matrix
and it represents a rotation of Rn. Orthogonal matrices with determinant
−1 represent rotations with flips, which we want to avoid.

But what does a special orthogonal matrix look like? Well, it turns out
that a matrix is orthogonal if and only if its columns form an orthonormal
basis of Rn, meaning that each column, regarded as a vector, has length 1
and is perpendicular to the others. Equivalently, a matrix is orthogonal if
and only if its rows form an orthonormal basis. It follows that every entry
in an orthogonal matrix is between −1 and 1, inclusively. Here are two
examples of orthogonal matrices:[√

3/2 −1/2
1/2

√
3/2

]
,

 1/2 −
√

3/2 0
3/4

√
3/4 −1/2√

3/4 1/4
√

3/2

 .
Both have determinant 1, so they’re special orthogonal. The numbers in
them look a little uniform because I constructed them using some convenient
Euler angles. More on that in the next two sections.

To apply the rotation T represented by the special orthogonal matrix M
to a vector ~v, we simply multiply them as matrices:

T (~v) = M~v.

To compose two rotations T and S, we multiply their matrices. To be
precise, if T is represented by the matrix M and S is represented by the

ROTATIONS 5

matrix N , then the rotation S ◦T comprising T followed by S is represented
by the product matrix NM :

(S ◦ T)(~v) = S(T (~v)) = NM~v.

Inversion of rotations corresponds to inversion of matrices, meaning that if
M represents T , then M−1 represents T−1. In general, inversion of matrices
is neither fast nor numerically robust, but inversion of orthogonal matrices
is both, because it is just transposition:

M−1 = M>.

We’ll leave the question of interpolation until later. For all other basic op-
erations, special orthogonal matrices are quite computationally convenient.
But we still don’t know how they relate to the idea of turning an object
about an axis through some angle. That comes next.

4. Two-Dimensional Rotations as Described by Angles

In this section we describe rotations of the plane R2 by specifying the
angles through which they rotate. By convention, we always measure angles
counterclockwise about the origin; that is, we follow a right-hand rule about
an axis pointing out of the plane toward the viewer. Remember that we
always measure angles in radians.

Given an angle θ and a two-dimensional vector ~v representing a point
in the plane, how do we rotate ~v counterclockwise about the origin by θ?
Perhaps the simplest way is to write down a special orthogonal matrix Mθ

that represents rotation by θ, and then to multiply Mθ by ~v. The matrix is

Mθ =
[
cos θ − sin θ
sin θ cos θ

]
.

Using the fundamental trigonometric identity sin2 θ + cos2 θ = 1, it is easy
to see that Mθ is special orthogonal for any θ. Namely,

MθM
>
θ =

[
cos θ − sin θ
sin θ cos θ

] [
cos θ sin θ
− sin θ cos θ

]
=

[
cos2 θ + sin2 θ cos θ sin θ − sin θ cos θ

sin θ cos θ − cos θ sin θ sin2 θ + cos2 θ

]
=

[
1 0
0 1

]
.

(One should also check that M>θ Mθ = I and that detMθ = 1.) For example,
if θ = π/6 = 30◦, then

Mπ/6 =
[
cosπ/6 − sinπ/6
sinπ/6 cosπ/6

]
=
[√

3/2 −1/2
1/2

√
3/2

]
≈
[
0.87 −0.5
0.5 0.87

]
.

If we multiply this by ~v = (1, 0), then sure enough we get ~v rotated by π/6:[√
3/2 −1/2

1/2
√

3/2

] [
1
0

]
=
[√

3/2
1/2

]
≈
[
0.87
0.5

]
.

6 JOSHUA R. DAVIS

Conversely, every special orthogonal matrix

M =
[
m11 m12

m21 m22

]
is equal to Mθ for some angle θ. Namely, if m21 ≥ 0, then θ = arccosm11;
if m21 < 0, then θ = − arccosm11. Using the fact the columns of M are
orthonormal, one can then check that m12 = − sin θ, m21 = sin θ, and
m22 = cos θ, as desired.

If we rotate two-dimensional space through some angle θ and then through
some angle φ, then the combined effect is to rotate through the angle φ+ θ.
So composing two rotations amounts to adding their angles. Of course,
composing the rotations also corresponds to multiplying their matrices, so
it had better be true that MφMθ = Mφ+θ. We verify this now:

MφMθ =
[
cosφ − sinφ
sinφ cosφ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cosφ cos θ − sinφ sin θ − cosφ sin θ − sinφ cos θ
sinφ cos θ + cosφ sin θ − sinφ sin θ + cosφ cos θ

]
=

[
cos(φ+ θ) − sin(φ+ θ)
sin(φ+ θ) cos(φ+ θ)

]
= Mφ+θ.

Here we have used the trigonometric identities

cos(φ+ θ) = cosφ cos θ − sinφ sin θ,
sin(φ+ θ) = sinφ cos θ + cosφ sin θ.

Similarly, the inverse of the rotation through θ is the rotation through −θ.
Using the identities cos(−θ) = cos θ and sin(−θ) = − sin θ, you can check
that M−θ = M> = M−1

θ .
Philosophically, all facts about rotations in R2 boil down to trig identities,

and all important trig identities come up in the proofs of these statements,
because trigonometry is the study of the rotations of R2. This rotation
matrix stuff is simply a rephrasing of trigonometry.

5. Three-Dimensional Rotations as Described by Angles

In three dimensions, angular representations of rotations become much
more complicated. Let us again agree that all angles are given in radians
and that they describe rotations counterclockwise about their axes according
to a right-hand rule. For example, suppose the desired rotation axis is the
z-axis. Hold your right hand in a fist, with your thumb pointing toward
your face. Your thumb represents the positive z-axis, and your fingers are
curling in a counterclockwise direction around that axis. A rotation of π/2
rotates everything 90◦ counterclockwise, in the direction that your fingers
are pointing. For example, the point (0, 1, 0) rotates to (−1, 0, 0). If a

ROTATIONS 7

clockwise or left-handed convention were in effect, then (0, 1, 0) would go to
(1, 0, 0).

With these conventions, it turns out that a rotation about the z-axis
through an angle γ corresponds to this 3× 3 matrix Zγ :

Zγ =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 .
It is easy to check that Zγ is special orthogonal for any γ, using trig identities
as in the preceding section. Similarly, a rotation about the y-axis through
an angle β is given by

Yβ =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 ,
and a rotation about the x-axis through an angle α is given by

Xα =

1 0 0
0 cosα − sinα
0 sinα cosα

 .
Notice that the minus sign appears in a “different place” in the rotation
about the y-axis.

Now imagine a rotation about the x-axis by some angle α, followed by
a rotation about the y-axis by an angle β, followed by a rotation about
the z-axis by an angle γ. For short, we’ll call this sort of composition an
x-y-z-rotation. It corresponds to the product of matricescos γ − sin γ 0

sin γ cos γ 0
0 0 1

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

1 0 0
0 cosα − sinα
0 sinα cosα

 .
As always, the matrices are written in “reverse order” because we apply
them by putting a vector on the right. The product of these matrices iscos γ cosβ cos γ sinβ sinα− sin γ cosα cos γ sinβ cosα+ sin γ sinα

sin γ cosβ sin γ sinβ sinα+ cos γ cosα sin γ sinβ cosα− cos γ sinα
− sinβ cosβ sinα cosβ cosα

 .
The three angles α, β, and γ are called the Euler angles of the rotation.

It turns out that any rotation of three-dimensional space is completely de-
scribed by its three Euler angles. In other words, we have three degrees
of freedom in choosing how to rotate space. To see this intuitively, think
of how we might orient a coordinate frame described by perpendicular unit
vectors ~a, ~b, and ~c. First we might choose where the vector ~a goes. It can
rotate in any direction, so that its tip is anywhere on the unit sphere. Once
we have oriented ~a, we choose where ~b goes. But ~b must be perpendicular
to ~a, and that forces it to lie along a circle. Once ~a and ~b are chosen, the
orientation of ~c is determined, because it must be perpendicular to ~a and

8 JOSHUA R. DAVIS

~b according to the right-hand rule. So we have two degrees of freedom in
choosing where ~a goes, one degree of freedom in choosing where ~b goes, and
no freedom in choosing where ~c goes. So we have three degrees of freedom
in all.

Now if

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

is an arbitrary special orthogonal matrix, how do we find its Euler angles
α, β, and γ? We compare M to the complicated x-y-z-rotation matrix
given above and solve for α, β, and γ entry by entry. For starters, m31

must equal − sinβ, so either β = − arcsinm31 or β = π + arcsinm31. Pick
one and compute cosβ. Now it must be true that cosα = m33/ cosβ and
sinα = m32/ cosβ. As in the previous section, infer α from its sine and
cosine. Use a similar process to infer γ from m11 and m21. At this point we
have values for all three angles. Compute some of the other entries in M ; if
our α, β, and γ do not produce the correct results, then repeat the process,
using the other value for β. (Of course, if you’re programming this you’ll
want to be more systematic, but then I suggest you find some code on the
Internet.)

This procedure breaks down in the important special case when m31 =
±1. For then β = ∓π/2 and cosβ = 0, so we cannot divide by cosβ. In this
special case the x-y-z-rotation matrix simplifies to 0 − sin(γ ± α) ∓ cos(γ ± α)

0 cos(γ ± α) ∓ sin(γ ± α)
±1 0 0

 .
That is, when β = −π/2 the rotation depends only on the single quantity
γ + α, rather than on γ and α separately. Similarly, when β = π/2 the
rotation depends only on γ − α.

Usually when we specify a value for one of the three Euler angles we
expect to have two degrees of freedom remaining — we still get to choose γ
and α, right? But specifying that β = ∓π/2 leaves us with only one degree
of freedom, in that only γ ± α matters. This unexpected loss of a degree
of freedom is called gimbal lock. It is loosely analogous to the fact that at
the north and south poles of the Earth, where the latitude is ±π/2, the
longitude is undefined.

Gimbal lock is a significant defect of the Euler angle description of ro-
tations. Because of it, the cosβ = 0 case must be treated specially in
computations; furthermore, when cosβ is nonzero but close to zero, numer-
ical procedures to determine α and γ are imprecise. We would prefer a
description of rotations in which we always have three well-behaved degrees
of freedom.

It should be noted that some authors do the rotations with respect to
different axes or in a different order; for example, [!!Akenine] uses what I

ROTATIONS 9

would call y-x-z-rotations. Such inconsistencies are inconvenient but not a
theoretical difficulty. Just about any convention works as well as any other.
As long as we agree on some convention, we can completely describe any
rotation by specifying three Euler angles.

Unfortunately, just about every kind of computation is inconvenient when
expressed in Euler angles. The composition of two x-y-z-rotations is some-
thing that might be called an x-y-z-x-y-z-rotation; how do we find its Euler
angles, to reexpress it as a single x-y-z-rotation? No, you cannot just add
the angles about the x-, y-, and z-axes. The inverse of an x-y-z-rotation is
a z-y-x-rotation. How do we express that as an x-y-z-rotation? You cannot
just negate the angles. Probably the most practical way to compose and
invert rotations described by Euler angles is to convert over to special or-
thogonal matrices, multiply or invert, and then infer the Euler angles from
the resulting matrix M using the procedure described above. However, this
procedure is complicated, slow, and numerically imprecise. In Euler angles
it is also difficult to specify rotations about arbitrary axes and to interpolate
between two rotations. So we need a better system.

6. Two-Dimensional Rotations as the Unit Complex Numbers

In this section we equate the group of rotations of R2 with the group of
unit complex numbers. This is only superficially different from the angular
model presented earlier, and it offers no practical advantage. However, the
reader who understands this presentation will be better prepared to under-
stand the three-dimensional rotations as the unit quaternions in the next
section.

Recall that a complex number is a number of the form a + ib, where a
and b are real numbers and i is a fixed imaginary unit, a number such that
i2 = −1. Therefore the product of two complex numbers is

(a+ ib)(c+ id) = ac+ aid+ ibc+ ibid = (ac− bd) + i(ad+ bc).

We identify the set of complex numbers with the real plane by identifying
a+ ib with the point (a, b). The norm |a+ ib| of a+ ib is simply its distance√
a2 + b2 from the origin. A unit complex number is a complex number with

norm 1; it lies on the unit circle in the plane. If |a + ib| = 1, then there is
an angle θ such that a = cos θ and b = sin θ. So the unit complex numbers
are exactly those of the form cos θ + i sin θ for some angle θ. We can also
express arbitrary complex numbers a+ ib in polar form

r cos θ + ir sin θ = r(cos θ + i sin θ),

where r = |a + ib| and θ is the angle corresponding to the unit complex
number (a+ ib)/r. The angle is undefined when r = 0.

By inspecting the Taylor series for ez, cos z, and sin z, it is easy to discover
Euler’s formula

eiθ = cos θ + i sin θ.

10 JOSHUA R. DAVIS

(The legendary equation eiπ + 1 = 0 follows.) So the complex number of
norm r and angle θ can be written succinctly as

r(cos θ + i sin θ) = reiθ.

Multiplication of complex numbers is most naturally done in this form:

seiφreiθ = srei(φ+θ).

For any vector ~v ∈ R2, we can multiply ~v by any complex number reıθ

by regarding ~v as a complex number, doing complex multiplication, and
regarding the resulting number reiθ~v as a vector in R2 again. For any
complex number reiθ, the resulting map R2 → R2 is a linear transformation.

Under this view of complex numbers as linear transformations of R2, the
unit complex number eiα represents a counterclockwise rotation of the two-
dimensional plane through the angle α. To see this, write ~v as ~v = |~v|eiθ,
where θ is the heading of ~v, measured counterclockwise from the x-axis.
Then

eiα|~v|eiθ = |~v|ei(α+θ).

The length of the rotated vector manifestly equals the length |~v| of the
original, but the heading of the vector has rotated from θ to α+ θ.

To compose two rotations eiα and eiβ, we simply multiply them. The
composition is eiβ · eiα = ei(β+α). The identity is e0 = 1. The inverse of
eiα is e−iα, since eiα · e−iα = e0 = 1. These agree with the composition and
inversion operations in the angular description of rotations of R2.

If a+ ib = eiα is a unit complex number describing a rotation through α,
then the corresponding special orthogonal matrix is[

cosα − sinα
sinα cosα

]
=
[
a −b
b a

]
.

7. Quaternions

It turns out that the complex numbers can be extended to an even larger
number system, the quaternions, that model rotations of three-dimensional
space excellently. The development of the concept takes a little while, but
it’s worth it. Quaternions make all sorts of rotation operations — application
to vectors, composition, inversion, interpolation, rotation about arbitrary
axes — easy, fast, and numerically robust.

Recall that a complex number is one of the form a+ ib, where a and b are
real numbers and i is a fixed imaginary unit satisfying i2 = −1. Analogously,
a quaternion is a number of the form a + ib1 + jb2 + kb3, where a, b1, b2,
and b3 are real numbers and i, j, and k are distinct fixed imaginary units
satisfying i2 = j2 = k2 = −1. We must also specify how i, j, and k interact,
and this is where things become strange:

ij = k, jk = i, ki = j.

ROTATIONS 11

It follows that ijk = −1 and that the imaginary units anticommute with
each other:

ij = −ji, jk = −kj, ki = −ik.
So while the complex numbers are commutative, the quaternions are not.
In the end this is appropriate, since the two-dimensional rotations commute
and the three-dimensional rotations do not. The quaternions do enjoy all of
the other basic algebraic properties that we like, such as associativity.

As an aside, it is worth pointing out that

a+ ib1 + jb2 + kb3 = (a+ ib1) + (b2 + ib3)j.

The quaternions are “complex complex numbers”, in that they are complex
numbers A + Bj with coefficients A = a + ib1, B = b2 + ib3 that are
themselves complex. The quaternions for which b2 = b3 = 0 are ordinary
complex numbers; the ones for which b1 = 0 as well are the real numbers.
The quaternions extend the complex number system, similarly to how the
complex numbers extend the real number system. This is essentially the
point of view that Rowan Hamilton held when he invented them in the
mid-1800s.

Just as it is customary to identify the complex number a + ib with the
two-dimensional vector (a, b), it is customary to identify a+ ib1 + jb2 + kb3
with the four-dimensional vector (a, b1, b2, b3). But now the notation takes
a strange turn. It is common to write

a+ ib1 + jb2 + kb3 = a+ (b1, b2, b3) = a+~b,

recording the three imaginary coordinates together in a three-dimensional
vector~b = (b1, b2, b3). This is an abusive notation, and care must be taken in
using it. The expression a+~b does not represent the sum of the scalar a and
the vector ~b; that wouldn’t make any sense. It just represents a quaternion
with real part a and imaginary parts given by the three entries in ~b.

Why put up with this bizarre notation? Well, using it we can derive an
interesting and useful formula for quaternion multiplication:

(a+~b)(c+ ~d) = (ac−~b · ~d) + (~b× ~d+ ~da+~bc),

where · and × denote the usual dot and cross products of three-dimensional
vectors! Keep in mind that the first term on the right is a scalar — the real
part of the quaternion — while the second part is a vector representing the
imaginary part. For example, when the real parts a and c are 0, then we
obtain the formula

(0 +~b)(0 + ~d) = −b · d+~b× ~d.

By this point, your interest should be piqued.
The real number 1 is the multiplicative identity in quaternions, as you’d

expect: (a+~b)1 = a+~b = 1(a+~b). You can see this by writing 1 as 1 + ~0
and then using the dot/cross multiplication formula:

(a+~b)(1 +~0) = (a−~b ·~0) + (~b×~0 +~0a+~b1) = a+~b,

12 JOSHUA R. DAVIS

and similarly (1 +~0)(a+~b) = a+~b.
The norm of a quaternion a+ ib1 + jb2 + kb3 is

|a+ ib1 + jb2 + kb3| =
√
a2 + b21 + b22 + b23 =

√
a2 +~b ·~b =

√
a2 + |~b|2.

The unit quaternions are those with norm 1. The product of any two unit
quaternions is again a unit quaternion. The real numbers 1 = 1 + ~0 and
−1 = −1 +~0 are both unit quaternions; they are the only unit quaternions
with zero imaginary part. If a+~b is unit, then

(a+~b)(a−~b) = (a2 +~b ·~b) + (~b×~b+~ba−~ba) = 1 +~0.

So the inverse of any unit quaternion a+~b is simply a−~b. Explicitly,

(a+ ib1 + jb2 + kb3)−1 = a− ib1 − jb2 − kb3.

So far we have discussed quaternions in their rectangular form. It is also
profitable, in analogy with the complex numbers, to consider a polar form.
If we begin with a unit vector ~u ∈ R3 and an angle α, then we can construct
a quaternion with real part cosα and imaginary part ~u sinα. Behold:

| cosα+ ~u sinα| =
√

cos2 α+ u2
1 sin2 α+ u2

2 sin2 α+ u2
3 sin2 α

=
√

cos2 α+ sin2 α|~u|2

=
√

cos2 α+ sin2 α

= 1.

So cosα+ ~u sinα is a unit quaternion. Conversely, all unit quaternions

a+~b = a+ ib1 + jb2 + kb3

are of this form. To find ~u and α from a and ~b, use this procedure: If
|~b| =

√
b21 + b22 + b23 = 0, then α = 0 and it doesn’t matter what ~u is;

in the typical case, when |~b| 6= 0, let ~u = ~b/|~b| and α = arccos a. Then
cosα+~u sinα = a+~b. So the unit quaternions are exactly those of the form
cosα+~u sinα for ~u a unit vector. This is analogous to the fact that the unit
complex numbers are exactly those of the form cosα+ i sinα.

Negation of α, ~u, and cosα + ~u sinα produce interesting effects. First,
negating α is tantamount to negating ~u, which is tantamount to inverting
the quaternion:

cos(−α) + ~u sin(−α) = cosα− ~u sinα = (cosα+ ~u sinα)−1.

Negating both α and ~u leaves the quaternion unchanged:

cos(−α) + (−~u) sin(−α) = cosα+ (−~u)(− sinα) = cosα+ ~u sinα.

The procedure given above for converting from rectangular to polar form
always produces angles α = arccos a between 0 and π, which may seem
biased, but now we see that we could express the same quaternion using α =

ROTATIONS 13

− arccos a and ~u = −~b/|~b|, so there is no bias. Finally, negating cosα+~u sinα
itself produces

−(cosα+ ~u sinα) = (− cosα) + ~u(− sinα) = cos(α+ π) + ~u sin(α+ π),

which is also a unit quaternion, with angle α + π. This becomes highly
significant in the next section.

To multiply two unit quaternions cosα + ~u sinα and cosβ + ~v sinβ, we
can use the dot/cross formula:

(cosβ + ~v sinβ)(cosα+ ~u sinα)
= (cosβ cosα− ~v · ~u sinβ sinα)

+ (~v × ~u sinβ sinα+ ~u sinα cosβ + ~v sinβ cosα).

This isn’t especially pretty, except in the special case when ~v = ~u:

(cosβ + ~u sinβ)(cosα+ ~u sinα)
= (cosβ cosα− ~u · ~u sinβ sinα)

+ (~u× ~u sinβ sinα+ ~u sinα cosβ + ~u sinβ cosα)
= (cosβ cosα− sinβ sinα) + ~u(sinα cosβ + sinβ cosα)
= cos(β + α) + ~u sin(β + α).

So when two unit quaternions are built from the same unit vector ~u, multi-
plying them amounts to adding their angles.

By analogy with the formula eiα = cosα + i sinα for unit complex num-
bers, we can define an exponential notation for unit quaternions:

e~uα = cosα+ ~u sinα.

Again, this notation is abusive. It does not represent the number e raised
to the vector ~uα; it is simply shorthand for cosα+ ~u sinα, which in turn is
shorthand for the rectangular form cosα + iu1 sinα + ju2 sinα + ku3 sinα.
But it ends up having some nice properties. We’ve already proved

e~uβe~uα = e~u(β+α),

e(−~u)α = e~u(−α),

e(−~u)(−α) = e~uα,

−e~uα = e~u(α+π).

Since e(−~u)α = e~u(−α), we can write e−~uα to mean either of these, without
ambiguity. We know that (e~uα)−1 = e−~uα. More generally, e~uα can be raised
to any real exponent t by the formula

(e~uα)t = e~uαt.

So the exponential notation enjoys many of the algebraic properties that
one would expect. However, it is not true that

e~vβe~uα = e~vβ+~uα

14 JOSHUA R. DAVIS

when ~u and ~v are distinct vectors. It’s not even clear what the right-hand
side would mean. This sort of multiplication has to be carried out in rect-
angular form:

e~vβe~uα = (cosβ + ~v sinβ)(cosα+ ~u sinα)
= (cosβ cosα− ~v · ~u sinβ sinα)

+ (~v × ~u sinβ sinα+ ~u sinα cosβ + ~v sinβ cosα).

8. Three-Dimensional Rotations as Unit Quaternions

The point of all this is that the unit quaternion e~uα = cosα + ~u sinα
represents a rotation of R3 about the axis ~u through an angle of 2α, according
to the right-hand rule. For example, if ~u = (1, 0, 0) and α = π/4, then e~uα

represents a rotation about the x-axis through π/2.
Here’s how this works. Given a unit quaternion a + ~b and a three-

dimensional vector ~v to rotate, we first regard ~v as the quaternion 0 + ~v.
Then we conjugate 0 + ~v by a+~b — meaning, we compute

(a+~b)(0 + ~v)(a+~b)−1.

It turns out that the answer’s real part is 0, and that its imaginary part is
the rotated vector we wanted. In detail,

(a+~b)(0 + ~v)(a+~b)−1

= (a+~b)(0 + ~v)(a−~b)

=
(

(0−~b · ~v) + (~b× ~v + ~va)
)

(a−~b)

=
(
−a~b · ~v + (~b× ~v + ~va) ·~b

)
+
(
−(~b× ~v + ~va)×~b+~b(~b · ~v) + (~b× ~v + ~va)a

)
= 0 +

(
−(~b× ~v)×~b− ~v ×~ba+~b(~b · ~v) +~b× ~va+ ~va2

)
= 0 +

(
−(~b× ~v)×~b+ (~b× ~v)2a+~b(~b · ~v) + ~va2

)
= 0 +

(
−2(~b× ~v)×~b+ (~b× ~v)2a+ ~v(~b ·~b+ a2)

)
= 0 +

(
−2(~b× ~v)×~b+ (~b× ~v)2a+ ~v

)
.

Here we have used identities such as

(~b× ~v) ·~b = 0,

−~v ×~b = ~b× ~v,
−(~b× ~v)×~b = ~b(~b · ~v)− ~v(~b ·~b).

Anyway, the upshot is that rotating a vector ~v in a right-handed sense about
the axis corresponding to the unit vector ~u through an angle of 2α produces

ROTATIONS 15

the vector
−2(~b× ~v)×~b+ (~b× ~v)2a+ ~v,

where a = cosα and ~b = ~u sinα. This is the formula for rotating vectors
about arbitrary axes in three-dimensional space.

Recall that the inverse of the quaternion a+~b is a−~b. In polar form e~uα,
inversion is equivalent to negating the angle α; that makes sense, because
the inverse of a rotation by 2α should be a rotation by −2α = 2(−α). It
is also equivalent to negating ~u, which makes sense, because this switches
the direction of rotation according to the right-hand rule. So inversion of
rotations is easy, when they are expressed as unit quaternions.

Composition of rotations is also easy. The rotation a+~b followed by the
rotation c+ ~d is the product (c+ ~d)(a+~b). We’ve already seen that in polar
form, if the unit vectors ~v and ~u are equal, then multiplication is equivalent
to adding angles; that makes sense, since rotating by 2α and then by 2β
about the same axis should be equivalent to rotating by 2(β + α).

Finally, recall that negating a unit quaternion amounts to adding π to its
angle:

−(cosα+ ~u sinα) = (− cosα) + ~u(− sinα) = cos(α+ π) + ~u sin(α+ π).

The negated quaternion represents a rotation through

2(α+ π) = 2α+ 2π,

which is equivalent to rotating through 2α, since extra multiples of 2π don’t
matter. So we see that e~uα and −e~uα represent the same rotation. It turns
out that there are no other unit quaternions that represent this rotation.
Hence the group of unit quaternions is “exactly twice as large” as the group
of three-dimensional rotations. In particular, 1 and −1 are distinct quater-
nions, but they both represent the trivial rotation.

In the end, rotation of R3 by unit quaternions is analogous to rotation
of R2 by unit complex numbers, but not perfectly. The unit complex num-
ber eiα acts by multiplication, with the effect of rotating by α, while the
unit quaternion e~uα acts by conjugation, with the effect of rotating by 2α.
Unit complex numbers correspond one-to-one to rotations of R2, while unit
quaternions correspond two-to-one to rotations of R3. These discrepancies
are connected to spin and Clifford algebras, but those lie beyond the scope
of this paper.

9. Missing Stuff

interpolation: matrices and quaternions
references

