Math 31L-02 Spring 2007 Exam 1 Answers

1. Use the definition of the derivative to compute the derivative of the function $f(x) = \frac{1}{x+4}$. Answer:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{x+h+4} + \frac{1}{x+4}}{h}$$

$$= \lim_{h \to 0} \frac{\frac{x+4}{(x+h+4)(x+4)} - \frac{x+h+4}{(x+h+4)(x+4)}}{h}$$

$$= \lim_{h \to 0} \frac{x+4 - x - h - 4}{h(x+h+4)(x+4)}$$

$$= \lim_{h \to 0} \frac{-h}{h(x+h+4)(x+4)}$$

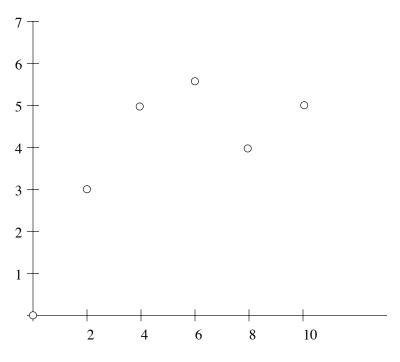
$$= \lim_{h \to 0} \frac{-1}{(x+h+4)(x+4)}$$

$$= \frac{-1}{(x+4)(x+4)}$$

2. Several values are plotted for a function y = f(x) below.

A. Numerically estimate the derivative of f at x = 0, 2, 4, 6, 8, 10. Wherever possible, your estimation should average the slopes from the left and right. Enter your answers in the spaces provided.

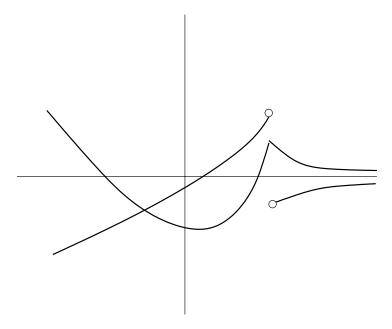
Answer: f'(0) = 1.5, f'(2) = 1.25, f'(4) = 0.625, f'(6) = -0.25, f'(8) = -0.125, f'(10) = 0.5.



B. Beginning with f(0) = 0, reconstruct f(x) from the six derivatives you computed in Part A, using Euler's method with step size $\Delta x = 2$. This reconstructed f will not agree with the one above. Plot it on the same graph above, so that the discrepancy is clear.

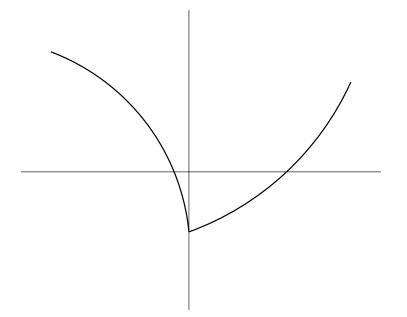
Answer: We begin at (0, 0, f'(0) = 1.5, so the next y is $0 + 2 \cdot 1.5 = 3$. So the next point is (2, 3). The next y is $3 + 2 \cdot 1.25 = 5.5$, so the next point is (4, 5.5). Similarly, the remaining points are (6, 6.75), (8, 6.25), and (10, 6.0). Graph these.

3. The graph of a function y = f(x) is shown below. Sketch the graph of y = f'(x) on top of it. Answer:



- 4. Draw a graph y = f(x) such that all three of these conditions are satisfied:
 - f'(x) < 0 and f''(x) < 0 when x < 0,
 - f'(x) > 0 and f''(x) > 0 when x > 0, and
 - f is not differentiable at x = 0.

Answer:



5. Let $f(x) = e^{x^3 - 3x}$. Your answers to Parts C and D must be explained using algebra, rather than just graphing the function on your calculator.

A. Compute f'(x). Answer: $f'(x) = (e^{x^3 - 3x})' = e^{x^3 - 3x} \cdot (x^3 - 3x)' = e^{x^3 - 3x} \cdot (3x^2 - 3)$. B. Compute f''(x). Answer:

$$f''(x) = \left(e^{x^3 - 3x} \cdot (3x^2 - 3)\right)'$$

= $(e^{x^3 - 3x})' \cdot (3x^2 - 3) + e^{x^3 - 3x} \cdot (3x^2 - 3)'$
= $e^{x^3 - 3x} \cdot (3x^2 - 3) \cdot (3x^2 - 3) + e^{x^3 - 3x} \cdot 6x$
= $e^{x^3 - 3x} \cdot ((3x^2 - 3)^2 + 6x).$

C. For which x is f(x) positive?

Answer: The function e^z is always positive, no matter what z is. So f(x) is positive for all x. D. For which x is f(x) increasing?

Answer: We wish to find where $f'(x) = e^{x^3 - 3x} \cdot (3x^2 - 3)$ is positive. Since the first factor in f'(x) is always positive, this boils down to finding where $3x^2 - 3$ is positive — in other words, where $x^2 > 1$. That's on the open set $(-\infty, 1) \cup (1, \infty)$.

6. A marshmallow is a cylinder of sugar-goo. One day you decide to cook one in a microwave oven. As it heats, it remains a cylinder, but it expands both in radius r and height h. I want to understand how the volume of the marshmallow changes.

A. Find a formula for the derivative of volume with respect to time, t.

Answer: We know $v = \pi r^2 h$, where both r and h depend on t. Using the product rule and the chain rule,

$$\begin{aligned} \frac{dv}{dt} &= \pi \frac{d}{dt} (r^2 h) \\ &= \pi \left(\frac{d}{dt} (r^2) \cdot h + r^2 \frac{d}{dt} h \right) \end{aligned}$$

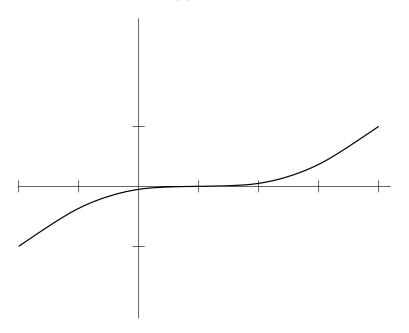
$$= \pi \left(2r \frac{dr}{dt} + r^2 \frac{dh}{dt} \right).$$

B. You observe the following data as the marshmallow cooks. Use the data and the answer to Part A to compute how fast the volume is increasing at time t = 5. Include the appropriate units in your answer.

Time t (s)	5	10	15
Radius r (mm)	3	13	24
Height $h \pmod{m}$	4	9	15

Answer: I estimate dh/dt = (9-4)/(10-5) = 1 and dr/dt = (13-3)/(10-5) = 2. Plugging these into the answer to Part A, along with r = 3 and h = 4, gives $dv/dt = 57\pi$.

7. Give a function y = f(x) whose graph could be the one below.



Answer: $f(x) = (x - 1)^3/27$.

8. Compute the following limits, or explain why they do not exist.

A. $\lim_{x \to 0} \sqrt{x+2} (1-e^x)$ Answer: Just plug in x = 0 to get a limit of 0. B. $\lim_{x \to 2} \frac{x^2 - 5x + 6}{x-2}$ Answer: Notice that $x^2 - 5x + 6 = (x-2)(x-3)$

Answer: Notice that $x^2 - 5x + 6 = (x - 2)(x - 3)$. So the function is question is really just x - 3. Now plug in x = 2 to get a limit of -1.

C. $\lim_{x \to \infty} \frac{x^2 + 2}{x(x-1)(x+7)}$

Answer: Expand the denominator. The highest-degree term is x^3 . Divide the numerator and denominator by x^3 . Then all terms in the numerator go to 0, while there is still a 1 in the denominator. So the limit is 0.