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Let S be the unit sphere

S = {x2
1 + x2

2 + x2
3 = 1} ⊆ R3

and ~p = (0, 0, 1) its “north pole”. For any point ~a = (a1, a2, 0) in the x1-x2-
plane, there is a unique line L through ~a and ~p, and this line intersects S in
exactly two points. One is ~p; call the other one ~b.

Define ~x : R2 → S ⊆ R3 by sending (u, v) to (u, v, 0) and then sending
(u, v, 0) to its corresponding ~b-point on S. It’s easy to see that this map ~x
is injective and hits every point on S except the north pole. Explicitly,

~x(u, v) =
(

2u

1 + u2 + v2
,

2v

1 + u2 + v2
,
−1 + u2 + v2

1 + u2 + v2

)
.

Under ~x, the unit circle is mapped to the equator and the unit disk is
mapped to the southern hemisphere; the rest of the u-v-plane is mapped to
the northern hemisphere. As |(u, v)| =

√
u2 + v2 →∞, the third coordinate

of ~x goes to 1, so ~x(u, v) → ~p. Identifying the plane R2 with its image under
~x, we see that the sphere is the plane with a single “point at infinity” added.

The inverse map ~x−1 : S → R2 that sends ~b to ~a (and then forgets about
a3 = 0) is called stereographic projection from ~p. It is defined everywhere
on S except at ~p itself.

One can define a parametrization around the north pole similarly, by
sending (u, v) to (u,−v, 0) and then inverting stereographic projection from
the south pole. The result is a map ~y : R2 → S given by

~y(s, t) =
(

2s

1 + s2 + t2
,

−2t

1 + s2 + t2
,
1− s2 − t2

1 + s2 + t2

)
.

It sends the unit circle to the equator and the unit disk to the northern
hemisphere. It covers the sphere except for the south pole. Together, ~x and
~y cover the entire sphere. Their overlap is the sphere except for the two
poles.

Notice the minus sign in the second coordinate of ~y. This is necessary for
the following beautiful magic to occur between ~x and ~y. By simple algebra,
one can check that

~y(s, t) = ~x

(
s

s2 + t2
,
−t

s2 + t2

)
,

~x(u, v) = ~y

(
u

u2 + v2
,

−v

u2 + v2

)
.
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These imply that the transition maps between the two charts are

(u, v) =
(

s

s2 + t2
,
−t

s2 + t2

)
,

(s, t) =
(

u

u2 + v2
,

−v

u2 + v2

)
.

One can check that the Jacobians of the transition maps have positive de-
terminant. So ~x and ~y induce the same orientation on their overlap in S.
But their relationship is more special than just this.

Let’s identify the real plane R2 with the complex line C, so that (u, v) ↔
u + iv ∈ C and (s, t) ↔ s + it ∈ C. Then the transition maps are

u + iv =
s− it

s2 + t2
=

1
s + it

,

s + it =
u− iv

u2 + v2
=

1
u + iv

.

So the transition maps are just complex number inversion! Of course, the
number 0 = 0 + i0 ↔ (0, 0) can’t be inverted. The origin (0, 0) in the s-t-
plane maps to the north pole, which is the missing “point at infinity” in the
u-v-plane. Thus the sphere “completes” the complex numbers C by adding
one more element, called ∞, that makes statements such as “1/0 = ∞”
rigorous. One can use this, for example, to construct an elegant theory of
complex rational functions p(z)/q(z), well-defined even where q(z) = 0.

Warning: The sphere of extended complex numbers C ∪ {∞} does not
constitute a field, in the sense of abstract algebra. You cannot do arith-
metic (particularly addition/subtraction) with ∞, even if it’s very natural
for geometry and complex analysis.


