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1. Sets

The precise definition of set is a foundational issue in mathematics, which we
will happily ignore. For our purposes, a set is simply a “collection” of “things”
(called elements), sometimes written in curly braces { and }. Examples include

• the set N = {0, 1, 2, 3, . . .} of natural numbers

• the set R of real numbers
• the set of people registered to vote in Durham, North Carolina
• the empty set, denoted ∅ or {}, which is the set containing no elements

The notation x ∈ X means that x is an element of the set X .
Given two sets X and Y , we say that X is a subset of Y iff every element of X

is also an element of Y . The empty set is a subset of every set, and any set is a
subset of itself. We say that X = Y iff X is a subset of Y and Y is a subset of X .
We say that X is a proper subset of Y iff X is a subset of Y and X 6= Y .

Subset notation sometimes causes students confusion. The notation is roughly
analogous to the < notation for numbers, but common usage has ⊂ being analogous
to ≤, not <; this discrepancy causes there to be three symbols for only two concepts:

Notation Meaning Notation Meaning
X ⊂ Y X is a subset of Y x < y x is less than y
X ⊆ Y X is a subset of Y x ≤ y x is less than or equal to y
X ( Y X is a proper subset of Y x � y x is less than y

In practice, to prove that X is a subset of Y you typically begin by saying “Let
x ∈ X .” You then prove that x ∈ Y . Since x was an arbitrary element of X , it
follows that every element of X is an element of Y , and thus that X ⊆ Y . To prove
that X = Y , you typically prove both that X ⊆ Y and that Y ⊆ X .

If X is a subset of Y , then Y \ X denotes the set that results when you remove
the elements of X from Y . It is called the complement of X in Y .

2. Functions

Given two sets X and Y , the Cartesian product X × Y is the set of all ordered
pairs (x, y) where x ∈ X and y ∈ Y . For example, R2 is the Cartesian product
R×R. The adjective “ordered” means that order matters: (3, 5) and (5, 3) are not
the same element of R2.

A relation E between X and Y is simply a subset of X×Y . The inverse relation

E−1 is the subset of Y ×X that contains the pair (y, x) if and only if (x, y) is in E.
A function f from X to Y is a relation such that for each x ∈ X there is exactly

one y ∈ Y such that (x, y) is in f . It is common to conceptualize f as a “rule” or
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“machine” that produces one and only one element y ∈ Y for each element x ∈ X .
The y corresponding to a given x is denoted f(x). Colloquially, we say that “f
sends x to y” or that “y is hit by x through (or via, or under) f”. The notations

f : X → Y and X
f−→ Y denote a function f from X to Y .

When we graph a function f : R → R in calculus, the fact that f is a function
means that every vertical line intersects the graph of f exactly once. There is
significant abuse of terminology; for example, y = 1/x is not, strictly speaking, a
function R → R but rather a function R \ {0} → R.

For any function f : X → Y , we call X the domain of f and Y the codomain of
f . The image or range of f is the subset of Y consisting of all y that are hit via f ;
that is, it is the set of y ∈ Y such that there exists an x ∈ X such that f(x) = y.
The image is commonly denoted im(f) or f(X).

The identity function on a set X is the function idX : X → X defined by
idX(x) = x. More generally, if X is a subset of Y , then there is a function i : X → Y
defined by i(x) = x; this is called the inclusion of X into Y . Inclusions are often
written in their own special notation, i : X ↪→ Y or even i : X ⊆ Y .

Let X
f−→ Y and Y

g−→ Z be two functions. The composition g ◦ f is the
function X → Z defined by (g ◦ f)(x) = g(f(x)). Notice that f ◦ idX = f and
idY ◦ f = f .

As defined above, any function f : X → Y is really a relation f ⊆ X × Y . A
calculus student would view the relation f as the graph of the function f . In any
event, f has an inverse relation f−1 ⊆ Y × X . However, the inverse will not be a
function in general. We investigate this problem in the following subsections.

2.1. Injectivity. A function f : X → Y is said to be injective (or one-to-one, or
an injection) iff, for all x1, x2 ∈ X , if f(x1) = f(x2) then it must be true that
x1 = x2. That is, two distinct elements x1 and x2 cannot be sent to the same
element of Y by f .

Any inclusion function i : X ↪→ Y is injective; in fact, the notation f : X ↪→ Y
can be used for any injection, to emphasize that it is injective.

When we graph a function f : R → R in calculus, injectivity means that every
horizontal line intersects the graph of y = f(x) at most once. The functions x, x3,
arctanx, ex, and

√
x are injective; functions 0, x2, and sin x are not.

If f is injective, then there exists a function F : Y → X (not necessarily unique)
such that F (f(x)) = x for all x ∈ X . That is, F ◦ f = idX ; we say that F is a left

inverse for f .
In practice, to prove that f is injective you typically begin by saying “Let x1, x2 ∈

X be such that f(x1) = f(x2).” You then prove that x1 = x2. Since x1 and x2

were arbitrary, this implies that f is injective.

2.2. Surjectivity. A function f : X → Y is said to be surjective (or onto, or a
surjection) iff for every y ∈ Y there exists an x ∈ X such that f(x) = y. That is,
every element in Y is hit by some element in X via f . In still other words, the
image of f equals the codomain of f .

Surjections are sometimes written in the special notation f : X →→ Y to empha-
size that they are surjective.

When we graph a function f : R → R in calculus, surjectivity means that every
horizontal line intersects the graph of y = f(x) at least once. The functions x, x3,
tanx, and ln x are surjective; functions 0, x2,

√
x are not.
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If f is surjective, then there exists a function F : Y → X (not necessarily unique)
such that f(F (y)) = y for all y ∈ Y . That is, f ◦ F = idY ; we say that F is a right

inverse for f .
In practice, to prove that f is surjective you typically begin by saying “Let

y ∈ Y .” You then prove that there is some x satisfying f(x) = y; often you do this
by explicitly telling the reader how to figure out x from y. For example, y = tan x
is surjective, since any y is hit by arctany: tan(arctan y) = y.

2.3. Bijectivity. A function f : X → Y is said to be bijective (or a bijection, or a
one-to-one correspondence) iff it is both injective and surjective.

For functions f : R → R, bijectivity means that every horizontal line crosses the
graph y = f(x) exactly once. The functions x and x3 are bijective.

If f is bijective, then there is a (unique!) function F : Y → X such that
F ◦f = idX and f ◦F = idY . This F is the inverse for f ; it is usually denoted f−1.
It agrees with the inverse relation for f , regarded as a relation. In other words, the
inverse of a function f is a function if and only if f is bijective.

Notice that if f is a bijection then so is f−1. Also, if f : X → Y and g : Y → Z
are both bijections, then so is g ◦ f , and

(g ◦ f)−1 = f−1 ◦ g−1 : Z → X.

2.4. Restriction. Let f : X → Y and U ⊆ X . Then the restriction f |U of f to U
is the function f : U → Y defined by f |U (x) = f(x). That is, f |U is essentially the
same function as f , but defined on a smaller domain.

Suppose that f : X → Y has image im(f) ⊆ Y . Then we may just as well regard
f as a function f : X → im(f). (Technically, the old f equals the composition of
the inclusion i : im(f) ↪→ Y with the new f .) This new f is then surjective. If f
was already injective, then the new f is a bijection between X and im(f).

These two procedures — restricting the domain and “restricting the codomain”
— can be used to build bijections from non-bijections. For example, consider
sin : R → R. This function is neither injective nor surjective. However, if we
restrict the domain to the interval [−π/2, π/2], then it becomes injective. If we
then restrict the codomain to [−1, 1], then it becomes surjective. So we end up with
a version of sin that is a bijection [−π/2, π/2] → [−1, 1]. Since it is a bijection, it
has an inverse [−1, 1] → [−π/2, π/2], which we call sin−1 or arcsin. This sin−1 is
an inverse for the restricted sin function, but it is not a true inverse for the original
sin function; sin ◦ sin−1 = id[−1,1], but sin−1 ◦ sin 6= idR.

3. Vector Space Isomorphisms

Let V and W be any two vector spaces. An isomorphism f : V → W is a bijection
such that f and f−1 are both linear transformations. The following lemma shows
that requiring f−1 to be linear is redundant.

Lemma 3.1. If f : V → W is a bijective linear transformation, then its inverse

f−1 : W → V is also a linear transformation.
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Proof. First let us note that ~w = f(f−1(~w)) for any ~w ∈ W . Then the fact that
f−1 respects addition follows from the fact that f respects addition:

f−1( ~w1 + ~w2) = f−1(f(f−1( ~w1)) + f(f−1( ~w2)))

= f−1(f(f−1( ~w1) + f−1( ~w2)))

= f−1( ~w1) + f−1( ~w2).

Similarly, f−1 respects scalar multiplication because f does:

f−1(c~w) = f−1(cf(f−1(~w)))

= f−1(f(cf−1(~w)))

= cf−1(~w).

So we see that f−1 is a linear transformation. ut

This means that any bijective linear transformation is an isomorphism of vector
spaces. It is easy to see that the inverse of an isomorphism is also an isomorphism.

The identity function idV : V → V is always an isomorphism. If V
f−→ W and

W
g−→ U are isomorphisms, then so is g ◦ f : V → U .

We say that V is isomorphic to W iff there exists an isomorphism between
them. Intuitively, two isomorphic vector spaces have equivalent structure; they are
essentially identical, except that their elements happen to be written using different
symbols. The isomorphism tells you how to translate the writing back and forth.
An isomorphism between vector spaces is like a dictionary between two languages
that differ only in vocabulary, not grammar.

Let V be an n-dimensional vector space and V = {~v1, . . . , ~vn} a basis for V .
Then V induces a function CV : V → Rn sending each vector ~v to its coordinates
in the basis V ; that is,

CV(x1 ~v1 + · · · + xn ~vn) =







x1

...
xn






.

It turns out that this function CV is an isomorphism. So after choosing a basis
for V we see that V is isomorphic to Rn. It is important to note, however, that
a different choice of basis for V induces a different isomorphism. Since there are
infinitely many bases for V , there are infinitely many isomorphisms between V and
Rn, with no “standard” or “canonical” one that is any better than the others. Any
n-dimensional vector space is isomorphic to Rn, but not “canonically”.

4. Exercises

1. Prove, for any function f : X → Y , that f can be written as h ◦ g, where g is
a surjection and h is an injection. (First you need to figure out what the domains
and codomains of g and h are.)

2. Prove, for any V with basis V , that CV is an isomorphism, as asserted above.
3. Explicitly describe isomorphisms f : M2×2 → R4 and g : P3 → R4. Use these

to construct an isomorphism from M2×2 to P3.


