
Math 104-01, Spring 2006, Exam 2

Instructions: This is an unlimited-time, open-book take-home exam — sort of like a homework
assignment on which you are not allowed to collaborate. The exam is due at the start of class on
Wednesday, 29 March 2006. I anticipate that it will take longer than one day to complete — about
as long as a homework assignment? — and you may find it helpful to revisit a problem over several
days. So I recommend that you get started as soon as possible.

Your solutions should be polished (concise, neat, and well-written, employing complete sentences
with punctuation) and self-explanatory. Submit them in a single stapled packet, presented in the
order they were assigned. Always show enough work so that I can follow your solution, but do not
show scratch work (false starts, circuitous reasoning, etc.). Quantitative answers should always be
exact and simplified.

Partial credit is often awarded. If you cannot solve a problem, write a brief summary of the
approaches you’ve tried. Exam grades will be curved, as usual.

Write and sign the honor pledge on your packet of solutions. Here are the rules:

• You may freely consult all of this class’ material: the textbook, your class notes, your old
homework, your old exam, and the class web site. If you missed a lecture and need to copy
someone else’s class notes, do so before beginning the exam.

• You may talk to me in private. You may ask clarifying questions for free. If you’re really
stuck on a problem, then you may ask for a hint, which will cost you some points. The
opportunity to ask questions is another reason to get started early.

• You may not cite theorems from later parts of the book that we have not studied. Your
solutions should make use of techniques covered thus far.

• You may not consult any other papers, books, microfiche, film, video, audio recordings,
Internet sites, etc. You may not use a calculator or computer, except to view the class web
site.

• You may not discuss the exam in any way (spoken, written, pantomime, etc.) with anyone
but me. During the exam you will inevitably see your classmates around campus. Please
refrain from asking even seemingly innocuous questions such as “Have you started the exam
yet?” (If a statement or question conveys any information, then it is not allowed; if it conveys
no information, then you have no reason to make it.)

If you have any questions about the exam or its rules, then ask for clarification.

1



1. In our discussion of 3D graphics, we studied how to rotate, translate, and project triangles in
R3 into a plane. We did not discuss how triangles in a plane (let’s say it’s just R2) are then drawn.
One problem is that in practice we don’t really have an infinitely large plane on which to draw, but
just a finite, usually rectangular computer screen or movie screen. For simplicity, suppose that our
screen is the unit square with vertices (0, 0), (1, 0), (1, 1), (0, 1) sitting in R2. A projected triangle
might lie in the screen, in which case we draw it, or it might lie entirely outside the screen, in which
case we don’t draw it. Then again, the triangle might lie partly in the screen and partly outside
it; we only want to draw the part of the triangle that lies in the screen.

Consider the figure below. The big triangle has one vertex (x1, y1) in the screen, and its two
other vertices (x2, y2) and (x3, y3) lie outside the screen. We want to draw the intersection of the
triangle with the screen, which is a pentagon. One vertex of the pentagon is (x1, y1), and the other
four are currently unknown. To find them, we need to intersect the sides of the triangle with the
sides of the screen.

A. Give a formula for the intersection point (p, q) in terms of (x1, y1) and (x2, y2).
Solution: The line through (x1, y1) and (x2, y2) has parametric form

`(t) = (x1, y1) + t(x2 − x1, y2 − y1) = (x1 + t(x2 − x1), y1 + t(y2 − y1)),

hitting (x1, y1) at time t = 0 and (x2, y2) at time t = 1. Similarly, the line through (1, 0) and (1, 1)
has parametric form

m(s) = (1, 0) + s(0, 1) = (1, s).

We wish to find a single point (p, q) on both lines; that is, we wish to solve

x1 + (x2 − x1)t = 1
y1 + (y2 − y1)t = s

for t and s. In other words, we wish to solve A

[
t
s

]
=

[
1− x1

−y1

]
, where

A =
[

x2 − x1 0
y2 − y1 −1

]
.

A special case occurs when x1 = x2; then the line ` is vertical, so either every point between (1, 0)
and (1, 1) is a solution or no point is. [I’ll omit this special case; you should not.] In the other case,
x2 − x1 6= 0 and

A−1 =
[ 1

x2−x1
0

y2−y1

x2−x1
−1

]
.

So the solution is [
t
s

]
=

[ 1
x2−x1

0
y2−y1

x2−x1
−1

] [
1− x1

−y1

]
=

[
1−x1
x2−x1

(y2−y1)(1−x1)
x2−x1

+ y1

]
.

The desired point is [
p
q

]
=

[
1
s

]
=

[
1

(y2−y1)(1−x1)
x2−x1

+ y1

]
.
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B. In general, if I give you any two points (x1, y1) and (x2, y2) in R2 (not necessarily arranged
as in the figure below — they can now be anywhere), then the line segment between the two might
not intersect the screen at all, in which case the computation from Part A is not really useful.
Given any two points (x1, y1) and (x2, y2), find a specific criterion that detects whether the line
segment between them intersects the line segment between (1, 0) and (1, 1).

Solution: In the notation of Part A, the line segments in question are `(t) for 0 ≤ t ≤ 1 and
m(s) for 0 ≤ s ≤ 1. So we simply compute t and s using the formulas of Part A; the line segments
intersect if and only if both

t =
1− x1

x2 − x1

and
s =

(y2 − y1)(1− x1)
x2 − x1

+ y1

are between 0 and 1.

(p, q)

(0, 1)

(0, 0) (1, 0)

(1, 1)

(x1, y1)

(x2, y2)

(x3, y3)

2. For any vectors ~v = (v1, v2) and ~w = (w1, w2) in R2, define

〈~v, ~w〉 = v1w1 − v2w2.

This is similar to the dot product, but with a minus sign. Define ||~v|| =
√
〈~v,~v〉, as one usually

defines a norm from an inner product.
A. It turns out that this 〈~v, ~w〉 does not define an inner product on R2. Which parts of the

definition of inner product does it satisfy, and which parts does it not satisfy?
Solution: [It satisfies the addition, scalar multiplication, and symmetry properties, as you

should show; I’ll omit these.] It does not satisfy positive definiteness; for example, if ~v = (1, 1),
then 〈~v,~v〉 = 1− 1 = 0, even though ~v 6= ~0.

B. It also turns out that ||~v|| doesn’t define a norm; for one thing, it’s not even defined every-
where. For which vectors ~v ∈ R2 is ||~v|| defined? For which ~v is it 0? For which ~v is it 1? Answer
these questions both in words/equations and in a detailed sketch of R2.

3



Solution: The quantity ||~v|| = ||(v1, v2)|| =
√

v2
1 − v2

2 is 0 for ~v such that v1 = ±v2; in the
v1-v2-plane, this is the “cone” consisting of the two lines of slope ±1 through the origin. This cone
divides the plane into four regions: left, right, top, and bottom. The quantity ||~v|| is undefined
when v2

1 < v2
2; this occurs in the top and bottom regions. In the other regions it is defined. The

quantity ||~v|| equals 1 if and only if v2
1 − v2

2 = 1, which describes a hyperbola. [I’ll omit the sketch;
you should not.]

C. Terminology: The determinant of a 2 × 2 matrix
[

a b
c d

]
is defined to be the quantity

ad− bc. A matrix is said to be special if it has determinant 1.
In Exercise 2.3 #13 you showed that all 2× 2 special orthogonal matrices are of the form

Aθ =
[

cos θ − sin θ
sin θ cos θ

]
for some number θ. (The other form in the exercise has determinant −1, as you can check; I’m not
interested in that.) In Exercise 2.1 #9a you also proved that these matrices preserve the standard
norm on R2, meaning that the norm of Aθ~v equals the norm of ~v.

Now I want you to do the same thing for the fake norm ||~v|| defined above. That is, give a
formula for matrices Bθ such that the determinant of Bθ is 1 and ||Bθ~v||2 = ||~v||2 for all ~v ∈ R2.
Explicitly show that your Bθ satisfies both of these properties. (Hint: Instead of using cos and sin,
use cosh and sinh. Recall that these are defined as cosh θ = (eθ + e−θ)/2 and sinh θ = (eθ − e−θ)/2.
They satisfy the identities such as cosh2 θ−sinh2 θ = 1, cosh(−θ)−cosh θ, and sinh(−θ) = − sinh θ.
Be careful about sign errors.)

Solution: I propose the answer

Bθ =
[

cosh θ sinh θ
sinh θ cosh θ

]
.

This has determinant cosh2 θ − sinh2 θ = 1. Also,

||Bθ~v||2 =
∣∣∣∣∣∣∣∣[ cosh θ sinh θ

sinh θ cosh θ

] [
v1

v2

]∣∣∣∣∣∣∣∣2
=

∣∣∣∣∣∣∣∣[ v1 cosh θ + v2 sinh θ
v1 sinh θ + v2 cosh θ

]∣∣∣∣∣∣∣∣2
= (v1 cosh θ + v2 sinh θ)2 − (v1 sinh θ + v2 cosh θ)2

= v2
1 cosh2 θ + v1v2 cosh θ sinh θ + v2

2 sinh2 θ − v2
1 sinh2 θ − v1v2 sinh θ cosh θ − v2

2 cosh2 θ

= v2
1(cosh2 θ − sinh2 θ)− v2

2(cosh2 θ − sinh2 θ)
= v2

1 − v2
2

= ||~v||2.

[Remark: Under the standard inner product on R2, the vectors of length 1 constitute a circle,
and we use circular trig functions to describe rotations. Under the fake inner product of this
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problem, the vectors of length 1 constitute a hyperbola, and we use hyperbolic trig functions to
describe “rotations”. Coincidence? No.]

[Remark: The fake inner product used in this exercise is essentially two-dimensional special
relativity, with v1 measuring one dimension of space and v2 measuring time. The cone described
in Part B is called the light cone; a particle moving at light speed travels along this cone.]

3. Let A be any n× n skew-symmetric matrix (which means that A> = −A, recall).
A. Prove that the kth power of A is symmetric if k is even and skew-symmetric if k is odd.
Solution: We compute

(Ak)> = (AA · · ·A︸ ︷︷ ︸
k times

)> = A>A> · · ·A>︸ ︷︷ ︸
k times

= (−A)(−A) · · · (−A)︸ ︷︷ ︸
k times

= (−1)k AA · · ·A︸ ︷︷ ︸
k times

= (−1)kAk.

So (Ak)> = Ak if k is even and (Ak)> = −Ak if k is odd, as desired.
B. For any odd number k, prove that ~v · (Ak~v) = 0 for all ~v ∈ Rn.
Solution: Let k be odd; then Part A says that (Ak)> = −Ak. For any ~v ∈ Rn,

~v · (Ak~v) = ~v>Ak~v

=
(
~v>Ak~v

)>
= ~v>(Ak)>(~v>)>

= ~v>(−Ak)~v

= −
(
~v>Ak~v

)
= −

(
~v · (Ak~v)

)
.

(The second equality holds because any 1× 1 matrix equals its transpose.) So ~v · (Ak~v) equals its
own negation; it must be 0.

C. Prove that if n = 3 then A must be singular. (In fact, A must be singular for any odd n,
but you don’t have to prove that.)

Solution: A 3× 3 skew-symmetric matrix A must be of the form

A =

 0 a b
−a 0 c
−b −c 0

 .

If a = 0, then the first and second row vectors are parallel, so A is singular. If a 6= 0, then we
perform Gaussian elimination as follows. [I’ll just describe it; you should show the steps, with no
explanation necessary. First switch the first and second rows. Then use these to zero out the first
two entries of the third row; the third entry also gets zeroed. The resulting matrix is in echelon
form, with the last row all zero.] Therefore A is singular.

[Remark: Nonsingular skew-symmetric matrices are sometimes called symplectic; they lie at the
heart of symplectic topology, a kind of math that is used both in classical mechanics and in current
theoretical physics.]
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4. In Section 3.6 (say, Example 1d) we saw several examples of vector spaces of functions. Now
we will generalize all of them. Let X be any set and V any vector space (not necessarily finite-
dimensional). Let F be the set of all functions from X to V . (All you know about a function f ∈ F
is that for each element x ∈ X it produces a vector f(x) ∈ V .)

A. Show that F is a vector space under the operations of function addition and scalar multipli-
cation. (We say that “F inherits a vector space structure from V ”.)

Solution: [You should check the eight vector space axioms on page 199. This is identical to
verifying that any other space of functions is a vector space, as you have done before on your
homework.]

B. Let x be any particular element of X and Fx ⊆ F the set of functions f such that f(x) = ~0.
Show that Fx is a subspace of F .

Solution: The zero function 0 : X → V , which has constant value ~0, certainly has value ~0 at
x, so Fx does contain the zero element of F . If f and g are in Fx, then f(x) = 0 = g(x), so
(f + g)(x) = f(x) + g(x) = ~0 + ~0 = ~0. So Fx is closed under addition. If f is in Fx, then for
any c ∈ R we have (cf)(x) = cf(x) = c~0 = ~0, so cf is in Fx. Thus Fx is closed under scalar
multiplication. So Fx is a subspace of F .

C. Suppose that V possesses an inner product 〈 , 〉. Suppose also that the set X is finite; say
X = {x1, . . . , xk}. Define

〈〈f, g〉〉 =
k∑

i=1

〈f(xi), g(xi)〉.

Is this 〈〈 , 〉〉 an inner product on F? Prove or disprove it.
Solution: It is an inner product; each property is inherited from the inner product 〈 , 〉 on V , as

follows. For addition,

〈〈f1 + f2, g〉〉 =
k∑

i=1

〈(f1 + f2)(xi), g(xi)〉

=
k∑

i=1

〈f1(xi) + f2(xi), g(xi)〉

=
k∑

i=1

〈f1(xi), g(xi)〉+ 〈f2(xi), g(xi)〉

=
k∑

i=1

〈f1(xi), g(xi)〉+
k∑

i=1

〈f2(xi), g(xi)〉

= 〈〈f1, g〉〉+ 〈〈f2, g〉〉.

For scalar multiplication,

〈〈cf, g〉〉 =
k∑

i=1

〈(cf)(xi), g(xi)〉
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=
k∑

i=1

〈cf(xi), g(xi)〉

=
k∑

i=1

c〈f(xi), g(xi)〉

= c
k∑

i=1

〈f(xi), g(xi)〉

= c〈〈f, g〉〉.

For symmetry,

〈〈f, g〉〉 =
k∑

i=1

〈f(xi), g(xi)〉

=
k∑

i=1

〈g(xi), f(xi)〉

= 〈〈g, f〉〉.

For positive-definiteness, assume that f is a nonzero function. This means that f(x) 6= ~0 for some
x ∈ X. Then the positive-definiteness of 〈 , 〉 implies that 〈f(x), f(x)〉 > 0 for this x, and also that
〈f(xi), f(xi)〉 ≥ 0 for the other xi. So 〈〈f, f〉〉 =

∑k
i=1〈f(xi), f(xi)〉 > 0.

D. Again suppose that X = {x1, . . . , xk} is a finite set. Also suppose that V is of finite dimension
n. Determine the dimension of F , and find a basis for it. (Suggestion: You might want to try a
few small examples first.)

Solution: Let {~v1, . . . , ~vn} be a basis for V . For each i = 1, . . . , k and j = 1, . . . , n, define a
function fij : X → V by

fij(x) = ~vj if x = xi,

fij(x) = ~0 for x 6= xi.

This set of kn functions forms a basis for F ; thus F is kn-dimensional. [You should check that this
set spans and is independent.]

5. In R4, let ~u =


1
−2
2
0

, ~v =


−1
0
1
1

, and ~w =


−1
−2
4
2

. Find a basis for the orthogonal

complement of the span of {~u,~v, ~w}.
Solution: Let A be the 3 × 4 matrix with rows ~u, ~v, ~w. We wish to find the orthogonal

complement of the row space of A, which is the null space of A; that is, we wish to solve A~x = ~0.
[I’ll omit the work here; you should not.] A basis for the null space is {〈2, 3, 2, 0〉, 〈2, 1, 0, 2〉}.
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6. You may already know the formulae

1 + 2 + · · ·+ n =
1
2
n2 +

1
2
n, 12 + 22 + · · ·+ n2 =

1
3
n3 +

1
2
n2 +

1
6
n.

I want to find a similar formula for the sum of fourth powers. Fortunately, there is a theorem that
says that, for any positive integer k (in my case, k = 4) there exist constants a1, a2, . . . , ak+1 such
that for all n ≥ 1,

n∑
i=1

ik = ak+1n
k+1 + akn

k + · · ·+ a1n.

You do not have to prove this theorem, but do explain how you would use linear algebra to find
the promised formula for k = 4. That is, write a system of linear equations whose solution gives
the coefficients ai in the k = 4 formula. (You do not have to solve the linear system.)

Solution: We have five unknown quantities, so we want five independent equations. The formula
must hold for all n, so in particular it must hold for n = 1, 2, 3, 4, 5. Plugging in these values of n,
we see that the ai must satisfy

a515 + a414 + a313 + a212 + a111 = 1
a525 + a424 + a323 + a222 + a121 = 17
a535 + a434 + a333 + a232 + a131 = 98
a545 + a444 + a343 + a242 + a141 = 354
a555 + a454 + a353 + a252 + a151 = 979.

[By the way, the solution is 〈a5, a4, a3, a2, a1〉 = 〈1/5, 1/2, 1/3, 0,−1/30〉, so

n∑
i=1

i4 =
1
5
n5 +

1
2
n4 +

1
3
n3 − 1

30
n.

This was not required.]
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