
Vectors

In what follows n will always be a positive integer.

A scalar is a real number. An n-vector is an ordered n-tuple of scalars. When it is clear from the
context what n is we will frequently say “vector” instead of “n-vector”. If (x1, . . . , xn) is an n-vector then,
for each i = 1, . . . , n, the scalar xi is called the i-th component of the n-vector. Let

Rn

denote the set of vectors. For each i = 1, . . . , n we let ei be the scalar valued function on Rn which assigns
to each n-vector its i-th component.

Given a vector x and a scalar c we define
cx

to be the vector whose i-th component is c times the i-th component of x, i = 1, . . . , n; cx is called scalar
multiplication of x by c. Given a vector x and a vector y we define

x + y

to be the vector whose i-th component is the sum of the i-th component of x and the i-th component of y,
i = 1, . . . , n; x + y is called the vector sum of x and y.

We let 0 ∈ Rn be the n-vector all of whose components are zero; we call this vector the zero vector.
Given an n-vector x we set −x = (−1)x.

Make sure you understand the geometric and physical interpretation of these operations!
Check out the book for lots of pictures. Better still, draw some of your own.

We urge the reader to verify the following properties of the vector operations we have just introduced:
Suppose c, d are scalars and x,y, z are n-vectors. Then

(v1) x + y = y + x;

(v2) (x + y) + z = x + (y + z);

(v3) x + 0 = x;

(v4) x + (−x) = 0;

(v5) c(x + y) = cx + cy;

(v6) (c+ d)x = cx + dx;

(v7) c(dx) = (cd)x;

(v8) 1x = x.

For each i = 1, . . . , n we let
ei

be the vector whose i-th component is 1 and whose other components are 0 and we let

ei

be the function with domain Rn which assigns to a n-vector its i-th component. Note that

x = e1(x)e1 + · · ·+ en(x)en =
n∑
i=1

ei(x)ei whenever x ∈ Rn.
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The dot product. Given n-vectors x = (x1 . . . , xn) and y = (y1, . . . , yn) we set

x • y =
n∑
j=1

xjyj

and call this scalar the dot product of x and y. As you will see, the dot product allows us to deal with
lengths and angles. We urge the reader to verify the following properties of the dot product:

Suppose c, d are scalars and x,y, z are n-vectors. Then

(d1) (x + y) • z = x • z + y • z;

(d2) (cx) • y = c(x • y);

(d3) x • y = y • x;

(d4) x • x ≥ 0 with equality only if x = 0.

Note that (1) and (3) imply that

(d1’) x • (y + z) = x • y + x • z

and that (2) and (3) imply that

(d2’) x • (cy) = c(x • y).

Keeping in mind (4),for each x ∈ Rn we set

|x| =
√

x • x

and call this nonegative real number the norm or length of x. Evidently,

|cx| = |c||x| whenever c ∈ R and x ∈ Rn.

The use of this terminology is justified by the Pythagorean Theorem from Euclidean geometry, the relevance
of which to the real world has been established by millenia of experience. All good things about the dot
product, and there are many, follow from the

Cauchy-Schwarz Inequality. Suppose x,y ∈ Rn. Then

|x • y| ≤ |x| |y|

with equality only if there is a scalar c such that either y = cx or x = cy.

Proof. We may assume that y is nonzero since otherwise the assertion holds trivially. For any t ∈ R we
have

(1) 0 ≤ (x + ty) • (x + ty) = |x|2 + 2t(x • y) + t2|y|2;

We leave as Exercise 1 for the reader to prove this using (d1)-(d4) above. Substitute

t = −x • y
|y|2

and transpose a bit to get the inequality. The remaining assertion follows by observing that if equality holds
in (1) then (x + ty) • (x + ty) must be zero which forces x + ty = 0 by (d4).
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Important Remark. Note that the proof depended only on (d1)-(d4) and not the definition of the
dot product. Thus the Cauchy-Schwarz Inequality holds in any context where (d1)-(d4) (and, implicitly,
(v1)-(v8)) hold. For example, given continuous f, g : [a, b]→ R we could set

f • g =
∫ b

a

f(x)g(x) dx

and conclude that ∣∣∣ ∫ b

a

f(x)g(x) dx
∣∣∣ ≤ (∫ b

a

f(x)2 dx
)1/2(∫ b

a

g(x)2 dx
)1/2

with equality only f = cg or g = cf for some constant c. The utility of the above dot product on functions
is amazing; modern communications depend on the mathematics derived from it.

The triangle inequality. Suppose x,y ∈ Rn. Then

|x + y| ≤ |x|+ |y|

with equality only if there is a scalar c such that either y = cx or x = cy.

Proof. Square both sides and use the Schwarz Inequality. Give the details in Exercise 2.

Orthogonal projection onto a line through 0 and a nonzero vector. Suppose x is a nonzero
n-vector. Let

u =
1
|x|x.

u is of unit length and is called the normalization of x. We let

projx(y) = x • u u =
x • y
|x|2 x for each n-vector y

and call this vector the orthogonal projection of y on the line passing through 0 and x. Let us
explain. Let

L = {tx : t ∈ R}.

By taking t = 0 and t = 1 we find that 0 ∈ L and x ∈ L, respectively. Moreover, L is a line; in fact, it is
the unique line containing 0 and x. (We will define what a line is shortly; maybe you can do it now.) We
claim that projx(y) is that point on L which is closest to y. To see this we set

S(t) = |y− tx|2 = |y|2− 2x • y + t2|x|2 for t ∈ R

and note that S has a unique minimum point when t = x•y
|x|2 .

The angle between two vectors. Given nonzero n-vectors x,y we keep in mind the Cauchy-Schwarz
Inequality and define the angle between them to be

6 (x,y) = arccos
( x • y
|x||y|

)
∈ [0, π].

Evidently,
x • y = |x||y| cos 6 (x,y).

This terminology will be justified if we can show that it is consistent with Euclidean geometry. We do this
by considering the parallelogram

P = {ux + vy : u, v ∈ [0, 1]}
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whose vertices are 0,x,y,x + y. The area of this parallelogram is

|x||y− projx(y)| =
√
|x|2|y|2 − (x • y)2;

we leave it as Exercise 3 for the reader to show that the square of both sides is the same. But the right
hand side of this equation is

|x||y| sin 6 (x,y)

which is as it should be. In particular, we find that x and y are perpendicular in the sense of Euclidean
geometry if and only if there dot product is zero which is the case if and only if the angle between them is
π
2 .

Volume. Given n n-vectors x1, . . . ,xn we set

[x1, . . . ,xn] = detX

where X is the n × n matrix in whose i-th row and j-th column is the i-th component of xj . We call
this scalar the volume of the sequence of vectors x1, . . . ,xn. The justification of this terminology will be
furnished shortly.

Some special features of R2. We set

i = e1 and j = e2.

Suppose x = (x, y) ∈ R2. We set
x⊥ = (−y, x).

Note that
i⊥ = j and j⊥ = −i.

Draw some pictures to verify that x⊥ is obtained by rotating x counterclockwise through an angle of π
2 .

Proposition. Suppose x,y ∈ R2 and c is a scalar. Then

(1) (x + y)⊥ = x⊥ + y⊥;

(2) (cx)⊥ = c(x⊥);

(3) x⊥ • x = 0;

(4) x⊥⊥ = −x;

(5) x⊥ • y⊥ = x • y;

(6) |x⊥| = |x|;

(7) [x,y] = x • y⊥.

Proof. Exercise 4 for the reader.

Some special features of R3. We set

i = e1, j = e2, and k = e3.
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Proposition. Suppose x,y ∈ R3. Then there is one and only one vector

x× y,

called the cross product of x and y, with the property that

(x× y) • z = [x,y, z] for any z ∈ R3.

Moreover, if x = (x1, x2, x3) and y = (y1, y2, y3) then

x× y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Proof. Supposing the cross product of x and y exists as in the defining property, we set z equal to i,j and
k, respectively, to deduce the given formula for the cross product and its uniqueness. Stuffing the formula
into the defining property, we see that the defining property holds.

Check out the book for all the properties of the cross product. Perhaps its most important property is
that x×y is perpendicular to both x and y and that it is 0 if and only if there is a scalar c such that either
x = cy or y = cx. We leave for the reader as Exercise 5 to verify that

|x× y| =
√
|x|2|y|2− (x • y)2;

if neither x nor y is zero, this is
|x||y sin 6 (x,y)

which is the area of the parallelogram

P = {ux + vy : (u, v) ∈ [0, 1]× [0, 1]}.

Using all of the above we find that
(x× y) • z = [x,y, z]

is the volume of the solid

S = {ux + vy +wz : (u, v, w) ∈ [0, 1]× [0, 1]× [0, 1]}.

Operations on vector valued functions. Suppose f is an n-vector valued function. For each i = 1, . . . , n
its i-th component is the function ei ◦ f .

Suppose c is a scalar and f is an n-vector valued function. Then

cf

is the n-vector valued function whose domain is the domain of f and whose value at x in the domain of f is
cf (x).

Suppose f is a scalar valued function and v is an n-vector. Then

fv

is the n-vector valued function whose domain is the domain of f and whose value at x in the domain of f
is f(x)v.

Suppose f and g are n-vector valued functions.

f + g
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is the n-vector valued function whose domain is the intersection of the domains of f and g and which whose
value at x in this intersection is f (x) + g(x).

Suppose f is a scalar valued function and g is an n-vector valued function. Then

fg

is the n-vector valued function whose domain is the intersection of the domains of f and g and which whose
value at x in this intersection is f(x)g(x).

Covectors. We say α is an n-covector if

(c1); α : Rn → R

(c2) α(x + y) = α(x) + α(y) whenever x,y ∈ Rn;

(c3) α(cx) = cα(x) whenever c ∈ R and x ∈ Rn.

We let
Rn

be the set of n-covectors. It is a simple matter to verify that a scalar multiple of a covector is a covector
and that the sum of two covectors is a covector. Note that

e1, . . . , en

are n-covectors.

Proposition. Suppose α : Rn → R. Then α is a covector if and only if there is a vector a such that

α(x) = x • a whenver x ∈ Rn.

Proof. The sufficiency follows from properties (d1) and (d2) of the dot product.
Suppose α is a covector. Let a be the vector whose i-th component equals α(ei), i = 1, . . . , n. Then for

any vector x = (x1, . . . , xn) we have

α(x) = α(
n∑
i=1

xjej) =
n∑
i=1

xjα(ej) = x • a.

Linear functions. Suppose

(l1) l : Rn → Rm.

We say l is linear if

(l1) l(cx) = cl(x) whenever c ∈ R and x ∈ Rn and

(l2) l(x + y) = l(x + l(y) whenever x,y ∈ Rn.

We let
Rm
n
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be the set of linear functions from Rn to Rm. It is a simple matter to verify that the sum of two members
of Rm

n is in Rm
n and that a scalar multiple of a member of Rm

n is in Rm
n . Proceed as in Exercise 6. We let

Rm
n

be the set of real valued linear functions from Rn to R. Note that R1
n is the set of n-covectors.

Proposition. Suppose l ∈ Rn and v ∈ Rm. Then

lv

is linear.

Proof. Exercise 7.

Proposition. ej is linear for each j = 1, . . . , n.

Proof. This is a direct consequence of the definitions.

Proposition. Suppose l ∈ Rm
n and k ∈ Rm

l . Then l ◦ k ∈ Rm
l .

Proof. Exercise 7.

Proposition. Suppose
l : Rn → Rm.

The l is linear if and only if each its components is linear.

Proof. Suppose l is linear. Then, by the preceding Proposition, lj = ej ◦ l is linear for each j = 1, . . . , n.
Suppose each component of l is linear. Then for any x ∈ Rn we have

l(x) =
n∑
i

li(x)ei = (
n∑
i

liei)(x)

which is to say that

l =
n∑
i

liei.

But we have already noted that scalar multiples and sums of linear functions are linear.

Proposition. Suppose l ∈ Rm
n . Let

aij = ei(l(ej)) i = 1 . . . , m, j = 1, . . . , n.

Then

l(x) =
m∑
i=1

(
n∑
j=1

aij x
j)ei for x ∈ Rn.
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Proof. Suppose x ∈ Rn. Then

l(x) = l(
n∑
j=1

xjej)

=
n∑
j=1

l(xjej)

=
n∑
j=1

xjl(ej)

=
n∑
j=1

xj(
m∑
i=1

ei(l(ej))ei)

=
n∑
j=1

xj(
m∑
i=1

ajiei)

=
m∑
i=1

(
n∑
j=1

ajix
j)ei).

As an exercise, give reasons justifying each of these steps.

Discussion. Thus a linear function from Rn to Rm is determined by its matrix which is, by definition,
the rectangular array with m rows and n columns which has the scalar

aij = ei(l(ej))

in its i-th row and j-th column i = 1 . . . , m, j = 1, . . . , n. This array is usually depicted as follows:
a1

1 a1
2 . . . a1

n

a2
1 a2

2 . . . a2
n

...
...

. . .
...

am1 am2 . . . amn

 .

Suppose l ∈ Rm
n and A is its matrix. The if x ∈ Rn and y = l(x) ∈ Rm then the preceding Proposition

says that

yi =
n∑
j=1

aijx
j, i = 1, . . . , m

which amounts to 
y1

y2

...

ym

 = A


x1

x2

...

xn

 .

The interested reader can verify that all the definitions and properties of matrix operations follow from
corresponding but usually more simply established definitions and properties of linear functions.
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