
The differential.

Let n be a positive integer.

Suppose f is functon whose domain is a subset of Rn and which has values in Rm for some positive
integer m. For each j = 1, . . . , n the partial derivative

∂jf

is, by definition, the set of ordered pairs (a,v) such that a is an interior point of the domain of f and

v = lim
h→0

1
h

[
f (a + hej) − f (a)

]
.

Note that for each j = 1, . . . , n the partial derivative ∂jf is a function, possibly empty, with values in Rm

whose domain is a subset of the domain of f .
In case n = 1 we set

f ′(a) = ∂1f (a).

We say f is differentiable at a if a is in the domain of each of the partial derivatives ∂jf , j = 1, . . . , n
and if

lim
x→a

1
|x− a| [f (x)− f (a)−

n∑
j=1

(xj − aj)∂jf (a)] = 0.

Note that if the j-th partial derivative of f exists at a if and only if the j-th partial derivative of each
component fi, i = 1, . . . , m exists at a in which case

∂jf (a) =
m∑
i=1

∂jfi(a)ei.

Example. Define f : R2 → R2 by setting

f (a, b) = (a2 − b2, 2ab) whenever (a, b) ∈ R2.

We have
∂1f (a, b) = (2a, 2b), ∂2f (a, b) = (−2b, 2a) whenever (a, b) ∈ R2.

Linear functions.

Apart from the empty function and constant functions, the simplest kind of function carrying Rn into
Rm is a linear function, which we now proceed to define. Suppose

l : Rn → Rm;

we say l is linear if

(1) l(cu) = cl(u) whenever c ∈ R and u ∈ Rn and

(2) l(u + v) = l(u) + l(v) whenever u,v ∈ Rn.

If n = 1 then l is linear if and only if the graph of l is a line through 0 in R ×Rm ≡ Rm+1. If n = 2
then l is linear if and only if the graph of l is a plane through 0 in R2 ×Rm ≡ Rm+2. Can you prove these
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assertions? At least in case m = 1? To succeed you will have to have a clear idea of what a line is and what
a plane is.

Note that for any x ∈ Rn we have

l(x) = l(
n∑
j=1

xjej) =
n∑
j=1

l(xjej) =
n∑
j=1

xjl(ej);

thus l is completely determined by its values on ej, j = 1, . . . , n.
On the other hand, if vj ∈ Rm, j = 1, . . . , n, and if l : Rn → Rm is defined by setting

l(x) =
n∑
j=1

xjvj for each x ∈ Rn

then it is easy to see that l is linear.
It is easy to verify, under appropriate hypotheses about domains, that a scalar multiple of a linear

function is a linear function; that the sum of linear functions is linear; and that the composition of linear
functions is linear.

Differentiability. Suppose f is functon whose domain is a subset of Rn and which has values in Rm

for some positive integer m. We say f is differentiable at a if a is an interior point of the domain of f and
if there is l such that l : Rn→ Rm, l is linear and

(1) lim
x→a

1
|x− a|

[
f (x)− f (a)− l(x− a)

]
= 0.

Note that l is uniquely determined by (1) because it implies that

l(ej) = ∂jf (a) for j = 1, . . . , n;

we call l the differential of f at a. We let
df

be the set of ordered pairs (a, l) such that f is differentiable at a and l is the differential of f at a. Note that
df , which we call the differential of f, is a function whose domain is a subset of the domain of f and whose
range is a subset of the set of linear functions carrying Rn into Rm. Note also that

df (a) = lim
h→0

1
h

[f (a + hv)− f (a)]

whenever f is differentiable at a and v ∈ Rn; we call this vector the derivative of f at a in the direction
v.

Make sure you understand that if m and n are both 1 then this amounts to the definition of differ-
entiability in one variable calculus. You may wonder why l is required to be linear. The answer is that
everything works under this hypothesis and that it is naturally verified in situations where one wishes to
apply multivariable calculus; in this regard, study the proof of the chain rule.

Here a simple and very useful sufficient condition for differentiability.

Theorem. Suppose

(1) a is an interior point of the domain of each of the partial derivatives of f and

(2) each of the partial derivatives of f is continuous at a.

Then f is differentiable at a.
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Proof. It’s in the book for the case n = 2 and m = 1 and its a straightforward matter to extend the proof
given there to other m and n.

Example. Let f be as in the previous example. Note that the partial derivatives are continuous everywhere,
so f is differentiable everywhere. Let’s show directly from the definition that this is the case. Fix a = (a, b) ∈
R2 and define l : R2 → R2 by setting

l(u, v) = u∂1f (a, b) + v∂2f (a, b) = u(2a, 2b) + v(−2b, 2a) = (2au− 2bv, 2bu+ 2av) for (a, b) in R2.

Next set
ε(x, y) = f (x, y)− f (a, b)− l(x− a) for (a, b) in R2.

Note that

ε(x, y) = (x2 − y2 − a2 + b2 − 2a(x− a) + 2b(y − b), 2xy− 2ab− 2b(x− a)− 2a(y − b))
= ((x− a)2 − (y − b)2, 2(x− a)(y − b))

for (a, b) in R2. To show f is differentiable at (a, b) is to show that

lim
x−a

ε(x) = 0.

But this is clearly the case as

|ε(x)| ≤ |x− a|2 + |y − b|2 + 2|x− a||y− b| = |x− a|2

whenever x = (x, y) ∈ R2; we used the triangle inequality to obtain the inequality.

A very important fact about differentiation of vector functions is the following.

The Chain Rule. Suppose

(1) f is a vector function whose domain is a subset of Rn, whose range is a subset of Rm and which is
differentiable at a;

(2) g is a vector function whose domain is a subset of Rm, whose range is a subset of Rl and which is
differentiable at f (a);

Then g ◦ f is differentiable at a and

d(g ◦ f )(a) = dg(f (a)) ◦ df (a).

Proof. See any good book on several variable calculus. Let me know when you find one.

Remark. Note that the chain rule implies

∂j(g ◦ f )(a) =
m∑
i=1

∂jfi(a)∂ig(f (a)), j = 1, . . . , n,

and

∂j(gk ◦ f )(a) =
m∑
i=1

∂jfi(a)∂igk(f (a)), j = 1, . . . , n, k = 1, . . . , m.
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