
Differentiation with respect to a coordinate.

A numerical function is a function whose domain and range are subsets of R, the set of real numbers.
Suppose f is a numerical function. We say f is differentiable at a a is an interior point of the domain of
f and

lim
x→a

f(x) − f(a)
x− a

exists. The derivative of f denoted
f ′

is, by definition, the set of ordered pairs (a, b) of real numbers f is differentiable at a and

b = lim
x→a

f(x) − f(a)
x− a .

Evidently, the domain of f ′ is the set of points in the domain of f at which f is differentiable; this set could
be empty, in which case f ′ is the empty function.

A very important fact about differentiation of numerical functions is the following.

The Chain Rule. Suppose

(1) f is a numerical function and f is differentiable at a;

(2) g is a numerical function and g is differentiable at f(a).
Then g ◦ f is differentiable at a and

(g ◦ f)′(a) = g′(f(a))f ′(a).

Proof. See any good book on one variable calculus. Let me know when you find one.

We now extend these notions as follows.
Let S be a set. We say y is a real variable on S if y : S → R. We say x is a coordinate on S if x is

a real variable on S and x is one to one.
Suppose y is a real variable on S and x is a coordinate on S. Note that y ◦ x−1 is a numerical function

whose domain is the range of x and whose range is the range of y. Evidently,

y = (y ◦ x−1) ◦ x.

That is, the numerical function y ◦ x−1 is what you do to x to get y. We say

y = b when x = a

and write
y|x=a = b

if a is in the range of x and y(x−1(a)) = b. We set

dy

dx
= (y ◦ x−1)′ ◦ x

and call dy
dx the derivative of y with respect to x; note that dy

dx is a function whose domain is a subset
of S and whose range is a subset of R. If the domain of dy

dx is all of S, which amount to saying that y ◦ x−1

is differentiable at each point of the range of x, we say that y is differentiable with respect to x.
We have the following.
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The chain rule for real variables. Suppose x and t are coordinates on the set S and y is a real variable
on S. Suppose y is differentiable with respect to x and x is differentiable with respect to t.

Then y is differentiable with respect to t and

dy

dt
=

dy

dx

dx

dt
.

Proof. Unwrap the definitions and invoke the chain rule for numerical

Corollary. Suppose x and t are coordinates on S. Then

dt

dx
=

1
dx
dt

.

Proof. Obvious. I hope.

Important Remark. Here is a good way to think of the chain rule. Given a coordinate x on S, let

d

dx

be the function which assigns dy
dx to the variable y on S. That is, d

dx is an operation you apply to one variable
on S to get another variable on S, or at least a subset of S. The chain rule amounts to the statement if t is
another coordinate on S then

d

dt
=

dx

dt

d

dx
.

Gee, that was so much fun we’ll do it again! We have

d2

dt2
=
(dx
dt

)2 d2

dx2
+
d2x

dt2
d

dx
.

We leave as an exercise for the reader to define the terms in this equation which need defining and then to
derive the equation. You could also write it as

d2

dt2
=
(dx
dt

)2 d
dx

d

dx
+
d

dt

(dx
dt

) d
dx
.

These notations are more subtle than you might think; make sure you understand them.

Example. Let S = (0,∞) and let x(a) = a for a ∈ (0, 1). Note that xp is a coordinate on S for any
nonzero real number p. Let p and q be nonzero real numbers. We have

d(xp)
d(xq)

=
d(xp)
dx

dx

d(xq)
=

d(xp)
dx

1
d(xq)
dx

=
pxp−1

qxq−1
=

p

q
xp−q.

Here’s another way to do it which proceeds straight from the definition. I don’t recommend doing it
this way, but it illustrates how things work at a low level. The formalism developed above is designed to
avoid having to do what we are about to do. What function do you do to xq to get xp? You raise xq to the
power p

q . That is, if we set f(a) = a
p
q for a ∈ (0,∞) then

xp = f ◦ xq.

Thus, as f ′(a) = p
q a

p
q−1 for a ∈ (0,∞)

d(xp)
d(xq)

= f ′ ◦ xq =
p

q
(xq)

p
q−1 =

p

q
xp−q.
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Example. Let C = {(a, b) ∈ R2 : a2 + b2 = 1} and let

S = {(a, b) ∈ C : a > 0, b > 0}.

Thus S is the part of the unit circle in the first quadrant of the Euclidean plane. We define

x : S → R, y : S → R, θ : S → R, u : S → R

by setting

x(a, b) = a, y(a, b) = b, θ(a, b) = arctan
b

a
, u(a, b) =

a

1− b
for (a, b) ∈ S. Note that each of x, y, θ, u are a coordinate for S. It would be nice if the S were the whole
circle C, or more of it than the part of C in the first quadrant but the then the definitions of θ and u would
break down and none of these functions would be coordinates. Each of these four coordinates is a
different way of tagging points on S by a number. That’s how you should think of coordinates.
The first three should be familiar; maybe the last one isn’t.

Exercise. Show that if (a, b) ∈ S then the point

(0, u(a, b))

is the point of intersection of the line passing through (0, 1) and (a, b) with the line {(a, 0) : a ∈ R}.1 This
point of intersection is called the stereographic projection of (a, b) on the x-axis.

Note that
x =

√
1− y2, x = cos θ, x =

2u
1 + u2

.

Exercise. Express each of y, θ, u as a function of the each the other three coordinates.

Exercise. Verify that dx
dy is a coordinate for S, that dy

dx is differentiable with respect to dx
dy and compute

d dy
dx
dx
dy

.

1 Some people would call this line the x-axis. We won’t do this because we’ve already used the identifier
x for something else, namely x of a point in S is its “x” coordinate.
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