Using Taylor Polynomials to Approximate Functions

- 1. (a) Find $P_3(x)$, the third-order Taylor polynomial for $f(x) = e^x$ at a = 0. (Ans: $P_3(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!}$.)
 - (b) Find an upper bound for the error if $P_3(.5)$ is used to approximate $e^{.5}$, given that $e^{.5} < 4^{.5} = 2$.

(Ans: Error = $|R_3(.5)| < \frac{1}{4!2^3} < .00521$.)

(c) Find n so that $P_n(.5)$, the nth-order Taylor polynomial for $f(x) = e^x$ at a = 0 with x = .5, estimates $e^{.5}$ to five decimal places (i.e., with error < .000005). For the n you find, evaluate $P_n(.5)$.

(Ans: n = 6 and $e^{.5} \approx P_6(.5) \approx 1.64872$ to five-decimal-place accuracy.)

- 2. (a) Find $P_4(x)$, the fourth-order Taylor polynomial for $f(x) = \ln x$ at a = 1. (Ans: $P_4(x) = (x-1) \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} \frac{(x-1)^4}{4}$.)
 - (b) Find an upper bound for the error if $P_4(x)$ is used to approximate $\ln x$ for |x-1|<.1 .

(Ans: Error = $|R_4(x)| < \frac{1}{9^55} < 3.39 \times 10^{-6}$.)

3. Find an upper bound for the error if $x - \frac{x^3}{3!}$ is used to approximate sin(x) for $x = 31^\circ = \frac{31\pi}{180}$.

(Ans: If we regard the polynomial as $P_3(x)$, then the

error =
$$|R_3(\frac{31\pi}{180})| \le \frac{(\frac{31\pi}{180})^4}{4!} < .00357.$$

If we view $x - \frac{x^3}{3!}$ as $P_4(x)$, then the error $= |R_4(\frac{31\pi}{180})| \le \frac{(\frac{31\pi}{180})^5}{5!} < .000387$.

We can also get the latter upper bound by using the Alternating Series Error Estimate.)

4. Find an upper bound for the error if $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$ is used to approximate sin(x) for $x = 31^\circ = \frac{31\pi}{180}$.

(Ans: Regarding the polynomial as $P_8(x)$ we have the

error =
$$|R_8(\frac{31\pi}{180})| \le \frac{(\frac{31\pi}{180})^9}{9!} < 1.10 \times 10^{-8}$$
.

This upper bound can also be obtained with the Alternating Series Error Estimate.)

- Let $P_n(x)$ be the n^{th} -order Taylor polynomial for $f(x)=\sin x$ at $a=\frac{\pi}{6}$. 5.

(a) Find
$$P_3(x)$$
.
(Ans: $P_3(x)=\frac{1}{2}+\frac{\sqrt{3}}{2}(x-\frac{\pi}{6})-\frac{1}{2}\frac{(x-\frac{\pi}{6})^2}{2!}-\frac{\sqrt{3}}{2}\frac{(x-\frac{\pi}{6})^3}{3!}$.)

(b) Find an upper bound for the error when $P_3(\frac{31\pi}{180})$ is used to approximate $sin(31^\circ) = sin(\frac{31\pi}{180})$ $sin(31^{\circ}) = sin(\frac{31\pi}{180})$

(Ans:
$$|R_3(\frac{31\pi}{180})| \le \frac{(\frac{\pi}{180})^4}{4!} < 3.87 \times 10^{-9}$$
.)

(c) Find an upper bound for the error when $P_7(\frac{31\pi}{180})$ is used to approximate $sin(31^{\circ}) = sin(\frac{31\pi}{180})$.

(Ans: Error =
$$|R_7(\frac{31\pi}{180})| \le \frac{(\frac{\pi}{180})^8}{8!} < 2.14 \times 10^{-19}$$
.)

Note: Problems 3-5 illustrate that approximations improve when n increases and when a is chosen closer to x.

for $|\sigma-1|<0.3$ (Aus. Line) $<\frac{1}{28}<3.39\times10^{-6}$)

orror = $|A_{\rm eff}|^{\frac{1}{16}} \ge |A_{\rm eff}|^{\frac{1}{16}} = 10 \times 10^{-8}$