Tests for Determining Convergence or Divergence of a Series

Definition: For n = 1, 2, ..., let $S_n = a_1 + a_2 + ... + a_n$.

- (1) If the sequence $\{S_n\}$ converges to S, then the series $\sum_{n=0}^{\infty} a_n$ converges and has sum S.
- (2) If the sequence $\{S_n\}$ diverges, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Geometric Series Test: Consider the geometric series $a + ar + ar^2 + ... = \sum_{n=0}^{\infty} ar^n$, with $a \neq 0$.

- (1) If |r| < 1, the series converges and has sum $\frac{a}{1-r}$.
- (2) If $|\tau| \ge 1$, the series diverges.

nth-term Test: If $\lim_{n\to\infty} a_n \neq 0$ or $\lim_{n\to\infty} a_n$ fails to exist, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

(Note: If $\lim_{n\to\infty} a_n = 0$, then the nth-term Test fails.)

Theorem: Suppose $\sum_{n=1}^{\infty} a_n$ converges to A and $\sum_{n=1}^{\infty} b_n$ converges to B.

- (1) Then the series $\sum_{n=1}^{\infty} (a_n + b_n)$ converges and has sum A + B.
- (2) Then the series $\sum_{n=1}^{\infty} ca_n$ converges for any real number c and has sum cA.

Runo Test: Let $\sum\limits_{i=1}^\infty a_i$ be a series of nonzero terms, and suppose that the kimit Corollary: If $\sum_{n=1}^{\infty} a_n$ diverges and c is any real number different from 0, then $\sum_{n=1}^{\infty} ca_n$ diverges.

Integral Test: Let $a_n = f(n)$, where f(x) is a continuous, positive, decreasing function for $x \ge 1$.

- egral Test: Let $a_n = f(n)$, where f(x) is a converges, then the series $\sum_{n=1}^{\infty} a_n$ converges.
- (2) If the improper integral $\int_{1}^{\infty} f(x) dx$ diverges, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

p-Series Test: Consider the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$.

- (1) If p > 1, then the series converges.
- (2) If $p \le 1$, then the series diverges.

Comparison Test: Consider the two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ where $0 \le a_n \le b_n$ for all $n \ge n_o$.

- (1) If the series $\sum_{n=1}^{\infty} b_n$ converges, then the series $\sum_{n=1}^{\infty} a_n$ converges.
- (2) If the series $\sum_{n=1}^{\infty} a_n$ diverges, then the series $\sum_{n=1}^{\infty} b_n$ diverges.

Limit Comparison Test: Consider the two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ where $a_n \ge 0$ and $b_n > 0$ for all

- (1) If $0 < L < \infty$, then the two series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ either both converge or both diverge.
- (2) If $\sum_{n=1}^{\infty} b_n$ converges and L=0, then the series $\sum_{n=1}^{\infty} a_n$ converges.
- (3) If $\sum_{n=1}^{\infty} b_n$ diverges and $L = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Alternating Series Test: Consider the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$

If $a_n > a_{n+1} > 0$ for all $n \ge n_0$ and $\lim_{n \to \infty} a_n = 0$, then the series converges.

Moreover, $|S-S_n| < a_{n+1}$ for all n, where S is the sum of the series and S_n is its n^{th} partial sum.

p-Series Test: Consider the p-series $\sum_{n=1}^{\infty} \frac{1}{n!}$

(2) Uthe scales $\sum_{i=1}^\infty c_{ii}$ diverges, then the scales $\sum_{i=1}^\infty c_{ii}$ diverges

Absolute Convergence Test: If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Corollary: If $\sum_{n=0}^{\infty} a_n$ diverges, then $\sum_{n=0}^{\infty} |a_n|$ diverges.

Ratio Test: Let $\sum_{n=1}^{\infty} a_n$ be a series of nonzero terms, and suppose that the limit Corollary: If $\sum_{n=0}^{\infty} a_n$ diverges and c is any real number different from 0, then $\frac{|a_{n+1}|}{|a_n|} = 0$

$$\rho = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

either exists or is infinite.

- (1) If $\rho < 1$, then the series $\sum_{n=0}^{\infty} a_n$ converges absolutely.
- (2) If $\rho > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.
- (3) If $\rho = 1$, then the test fails

Root Test: Let $\sum_{n=1}^{\infty} a_n$ be a series and suppose that the limit

$$\rho = \lim_{n \to \infty} \sqrt[q]{|a_n|}$$

either exists or is infinite.

- (1) If $\rho < 1$, then the series $\sum_{n=1}^{\infty} a_n$ converges absolutely.
- (2) If $\rho > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.
- (3) If $\rho = 1$, then the test fails.