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Abstract

The commonly used expression of the closure temperature, TC, of a diffusing species in a mineral, as derived by M.H.
Dodson [Contrib. Mineral. Petrol. 40 (1973) 259–264], is applicable only to systems which have undergone sufficient
diffusion so that even the composition at the center of individual grains is significantly removed from that established at
the onset of cooling. We have extended Dodson’s formulation to include cases with arbitrarily small amount of diffusion,
and applied it to calculate TC and age profiles, which would develop in single crystals of different geometries. These results
permit evaluation of the extent of resetting of mineral age and of ion exchange geothermometers during cooling. The
measured age profile of a mineral can also be used to constrain its cooling rate. These applications have been illustrated for
the cases of garnet–biotite Fe–Mg exchange geothermometer, and the cooling age and closure temperatures of the Sm–Nd
and Lu–Hf decay systems in garnet.  1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The closure temperature, TC, of a diffusing
species in a mineral undergoing cooling during its
transport to the Earth’s surface has been a topic
of considerable interest among geochronologists and
petrologists. The cooling rate of a regionally meta-
morphosed rock, which reflects its exhumation rate,
is often derived from a plot of selected mineral
ages vs the closure temperatures of the specific
geochronological systems in the minerals (e.g. [1,2]).
The answer to the question of whether a mineral age
dated by a particular decay system corresponds to
the peak metamorphic age or a cooling age rests
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critically on the closure temperature of the system
in the particular mineral. Further, the interpretation
of geothermometry and geobarometry in terms of
peak metamorphic versus cooling conditions of a
rock depends on the closure temperature of the com-
positional properties of the minerals used for these
purposes.

In a seminal contribution, Dodson [3] formalized
the concept of closure temperature of a diffusing
species in a mineral and derived an analytical so-
lution for TC. Subsequently, he [4] expanded the
concept to address the problem of closure tempera-
ture of slowly diffusing species, which may develop
a closure temperature profile, TC.x/, and thus of re-
lated variables, because the equilibration of the core
with the surrounding matrix may lag behind that of
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Fig. 1. Successive concentration profiles in a mineral at different
temperatures (1–12) during cooling (modified from Dodson [4]).
The interface of the mineral is in equilibrium with the matrix
at all stages. The increasing nonuniformity of the concentration
profiles is a consequence of the time scale of diffusive homoge-
nization in the mineral progressively lagging behind that of the
change of interface composition during cooling. The quenched
concentration profile preserves compositions that have developed
in the mineral over a range of temperature (8–12).

the interface during cooling, as illustrated in Fig. 1.
To simplify the derivation of analytical solutions,
Dodson [3,4] assumed that the mineral of interest (a)
is surrounded by a matrix which behaves as a ho-
mogeneous infinite reservoir of the diffusing species,
(b) has achieved homogeneous concentration of the
diffusing species at a temperature To at the onset
of or during cooling, and (c) has a closure profile
which is sufficiently removed at all points from the
homogeneous state established at To (Fig. 1). The
last assumption is implied by an imposed mathemat-
ical condition, as discussed below. In addition, the
surface composition of the mineral was assumed to
change linearly with time between To and TC.

For a mineral such as garnet, which is the most ex-
tensively used mineral for the purpose of geothermo-
barometry and geochronology, the condition (c) is
not usually satisfied because of its slow diffusion
properties with respect to the elements that are used
for these purposes [5–7]. Indeed, one often sees ho-
mogeneous core composition of the divalent cations
like Fe and Mg and zoning only near the margin

in garnets exhumed from high grade metamorphic
conditions (e.g. [8,9]) even when the garnet is in
contact with biotite which has relatively much faster
diffusion property so that the diffusion in garnet is
effectively the rate-limiting step in the development
of compositional zoning. For geologically reason-
able cooling rates, this type of compositional zoning
in a mineral with slow diffusion property implies
preservation of the peak metamorphic composition
at the core (cf. [10]).

In its commonly used forms, Dodson’s formula-
tions [3,4] will not be valid for the determination
of closure temperatures of a diffusing species in a
mineral which bear any signature of the composi-
tion developed at To in its quenched concentration
profile. The purpose of this paper is to extend Dod-
son’s formulations to include the case of arbitrarily
limited diffusion, thus making them applicable to
a wider range of petrological and geochronological
problems, and then to apply the modified formula-
tions to evaluate the closure temperatures of selected
geo-thermometric and -chronological systems.

2. Review of Dodson’s mathematical analysis

We start with a brief review of Dodson’s [4]
mathematical analysis of the closure temperature
problem, retaining his symbols to facilitate compari-
son.

Combining eqs. 13, 14 and 15 of Dodson [4] one
has:
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where x is a normalized positional coordinate of the
crystal (e.g. normalized radial distance of a spherical
crystal), Þn and þn are characteristic properties of the
crystal geometry, u is a time variable defined as u D
M.1 � e�ð/, where ð is a dimensionless time and
M is a dimensionless parameter as defined below,
and bn D Þ2

n M . According to Dodson [4], Þn and þn

can be calculated as: (a) Þn D .n� 1
2 /³ and þn.x/ D

.�1/nC1 cos.Þnx/ for plane sheet (�1 < x < 1);
(b) Þn ³ .n � 1

4 /³ and þn.x/ D Jo.Þnx/J1.Þn/ for
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cylinder (J � Bessel function); and (c) Þn D n³ and
þn.x/ D .�1/nC1 sin.Þnx/ for sphere.

For t ! 1, u ! M , in which case the upper
limit of the above integral becomes 0. Dodson [4] also
showed that for t !1, Q D E=RTC.x/ � E=RTo,
where E is the activation energy of diffusion. Thus,
for t !1, Eq. 1 reduces to:
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At this point Dodson imposed the condition
M × 1 (i.e. bn very large) so that the integral in
Eq. 2 effectively equals the Euler constant C (which
is 0.5772157: : : ), and the last exponential term be-
comes insignificant. Thus, one obtains:
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(3.1)

The dimensionless parameter M equals D.To/−=a2,
where D.To/ is the diffusion coefficient at To, a is
characteristic dimension of the crystal (e.g. radius of
a spherical or a cylindrical grain and half thickness of
plane sheet), and − is a characteristic time taken for
D to diminish by a factor ‘e’ (i.e. by ¾2=3) during
cooling (D D Do e�E=RT � D.To/ e�t=− , assuming a
linear change of 1=T vs t , i.e. E=RT D E=RTo C
t=− or 1=T D 1=To C �t with � D R=E− ). The
physical implication of the condition M × 1 can be
understood by noting that, from its definition,

p
M

is of the order of the average distance the diffusing
species would travel at To within the time scale −
relative to the characteristic dimension of the crystal.
Thus, M × 1 implies a large enough extent of
diffusion to significantly affect the core composition
of the crystal.

Dodson [4] showed that
P
þn=Þn D 0:5. Thus,

substituting:
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Eq. 3.1 reduces to:
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(which is Dodson’s [4] eq. 19). The quantity within
the last parentheses has been defined as the ‘closure
function’, G.x/, by Dodson [4].

The closure temperature TC defined earlier by
Dodson [3] is simply a weighted average of TC.x/ so
that:

E
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D ln
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�
C G (5)

where G is the spatially weighted average of G.x/.
The G.x/ and G values are given in [4] for plane
sheet, cylinder and sphere. Defining now A D eG ,
Eq. 5 becomes the classic Dodson [3] equation for
closure temperature (eq. 23).

3. Extension of Dodson formulation to include
systems with arbitrarily small amount of
diffusion

In order to develop a general formulation of TC

which is valid for any M (i.e. arbitrary extent of
diffusion), we need to add a ‘correction’ closure
function, g.x/, to the right hand side of Eq. 4 so
that the general expression of TC , given by Eq. 2, is
recovered. It is easy to see that this correction term
must be:
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The integral in Eq. 6 can be expressed as:Z bn
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The last integral can be evaluated as follows (e.g.
[11], eqs. 522 and 524):Z bn

0
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Combining Eqs. 8 and 9, we have:Z bn
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The first term within the square bracket can be
evaluated for v D 0 as follows:

ln v.1� e�v/ D �1� e�v

ln v
Using L’Hôpital’s rule:
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which leads to:
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This expression of g.x/ is to be substituted in the
following expression to calculate TC.x/:
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For large values of bn (corresponding to large
values of M since bn D Þ2

n M), the convergence
of the series in Eq. 11 requires extremely large
number of terms causing computational problems. In
evaluating the series, we have truncated the value of
bn at 10. The residual value of the series for bn >

10 is negligible. This can be easily demonstrated

by referring to Eq. 6 and noting that the value of
the function ln.v/ e�v essentially vanishes for large
values of v. The value of the integral

R
ln.v/ e�v dv

from bn D 10 to infinity is ¾10�4, as evaluated
numerically. Comparing Eqs. 6 and 11, the numerical
magnitude of the series in Eq. 11 at bn D 10 is given
by:

g.x/ D �2
1X

nD1

þn.x/

Þn

�Z bn

1
ln.v/ e�v dv C e�bn ln.bn/

½

D �2
1X

nD1

þn.x/

Þn

ð�10�4 C e�10 ln.10/
Ł

³ �10�4

Thus, no significant error is introduced in the
evaluation of g.x/ by truncating the series at bn D
10.

We have evaluated g.x/ as a function of M for
three different geometries, namely sphere, cylinder
and plane sheet, using the expressions of Þn and þn

for these geometries. The spatially weighted mean of
g.x/ for each geometry, denoted by g, is illustrated
in Fig. 2 as a function of M . It is evident that in order
for the commonly used Dodson [3] formulation of
TC to be valid, the dimensionless term M should be
greater than 0.3 for sphere, 0.6 for cylinder and 1.2
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Fig. 2. Behavior of the ‘correction term’ g vs the dimensionless
parameter M for sphere, cylinder and plane sheet. g is the
spatially weighted mean of the correction closure function, g.x/
(Eqs. 6 and 11).
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Fig. 3. The mean closure temperature, TC, for grains with (a)
spherical (heavy line), (b) cylindrical (medium solid line) and
(c) plane sheet (light solid line) geometries vs log M, and the
commonly used form of TC due to Dodson [3,4] (dashed lines).

for plane sheet. However, even though we demon-
strate that Dodson’s [3,4] specialized equations for
TC are valid for much smaller values of M than what
he had originally stipulated, the composition of a
crystal must still be significantly removed, even at
its core, from the initial homogeneous composition
established at To, as demonstrated later.

Using Eq. 12, we have calculated the spatially
weighted mean closure temperatures for sphere,
cylinder and plane sheet as functions of M and To.
The results are illustrated in Fig. 3 for To of 900º and
700ºC using a logarithmic scale of M . Also shown
for comparison are the TC vs log M for each geome-
try using the commonly used formulation of Dodson
[3]. To get a feeling for the value of M in geological
problems, let us consider a 2 mm diameter spheri-
cal garnet crystal which had achieved homogeneous
composition at 700ºC (To), and was then subjected to
cooling at a rate of 25ºC=Ma near To. This scenario is
within the range of peak metamorphic and exhuma-
tion conditions of granulite facies rocks. If the initial
T –t path of the rock conforms to a linear relation of
1=T vs t (in which case − D �RT 2=E.dT=dt/T ),
then one obtains from the definition of M (Eq. 3.2):

M D � RD.To/T 2

E.dT=dt/T a2
D RD.To/

E�a2
(13)

Using the diffusion data [7] for Sm and Nd in
garnet (DSm ³ DNd D 1:79ð 10�4e�31039=T cm2=s),
and T � To, we get log M � �2:0. If the grain size
increases by a factor of 2, then log M decreases by
0.60, and vice versa.

From Eq. 12, the expression for mean closure
temperature can be written in the commonly used
form of Dodson’s equation ([3], eq. 23) as:

E
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D ln

�
� A0RT 2

C Do

E.dT=dt/TCa2

�
(14)

where A0 D eGCg. The values of G, as given in
[4], are 4.0066 for sphere, 3.29506 for cylinder and
2.15821 for plane sheet (Dodson, [3] gave the values
for eG as A), while those of g can be read off Fig. 2.

4. Closure temperatures, cooling rates and
geothermometry

Using Eq. 12, one can now calculate the clo-
sure temperature profile (TC.x/) of a single crystal
and the weighted mean closure temperature (TC) as
a function of M , To, and the normalized distance.
Fig. 4 illustrates the results of calculations for grains
with spherical and plane sheet geometries and with
To D 700ºC, 900ºC and 1100ºC. The resetting of the
central composition of a garnet crystal as a function
of To and M is illustrated in Fig. 5. As evident from
Fig. 3, the TC for a cylindrical grain will be interme-
diate between these two cases. The activation energy
used for this calculation has been chosen to be that
for Fe–Mg interdiffusion in a binary garnet with
Fe=(Fe CMg) D 0.75. The interdiffusion coefficient,
D.Fe–Mg/, has been calculated according to:

D.Fe–Mg/ D DFe DMg

XFe DFe C XMg DMg
(15)

where DFe and DMg are the self diffusion coefficients
of Fe and Mg, respectively. These self diffusion val-
ues for garnet are taken from Ganguly et al. [6],
which yield D.Fe–Mg/ D 7:22ð10�5e�E=RT cm2=s
with E D 266:5 kJ=mol at 7 kbar and XFe D 0:75.
In Fig. 4, the weighted mean closure temperature,
TC, corresponding to each TC.x/ profile for spheri-
cal geometry is shown by a connected dashed line.
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Fig. 4. Closure temperature profiles (solid lines) and weighted mean closure temperatures (dashed line) as function of M and
dimensionless distance for (a) To D 700ºC, (b) To D 900ºC and (c) To D 1100ºC for mineral with E D 266 kJ=mol. The closure
temperature profiles for the sphere and plane sheet are illustrated by heavy and light solid lines (those for cylinder should be intermediate
between these two cases). Only heavy lines are shown where these are almost indistinguishable from the light lines for a given M. The
mean TC � s are only for spheres. Each mean TC corresponds to the TC profile to which it is connected by a heavy dot. The cooling rate
(K=Ma) at the mean TC of a spherical 2 mm diameter crystal corresponding to a specific value of M is shown in the parentheses. The
cooling rate for a different grain size can be calculated from these data by noting that it varies as 1=a2 for a given value of M.

Assuming a linear change of 1=T vs t between To

and TC, the cooling rate corresponding to a given
value of M can be calculated from Eq. 13 if the

grain size is specified. As examples we have shown
the cooling rates corresponding to a 1 mm charac-
teristic length (radius for a spherical or cylindrical
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of To and M. The activation energy of diffusion is 266 kJ=mol,
which is typical of garnet in metamorphic rocks. The curves
for M D 0:1 for sphere and M D 0:2 for plane sheet are
overlapping. The curve for M D 0:1 for plane sheet grazes the
horizontal axis, and is, thus, omitted from the figure.

grain and half-thickness for a plane sheet) within the
parentheses beside each value of M . The cooling rate
for any other grain size can be readily determined
from these data noting that, according to Eq. 13,
.dT=dt/TÞ1=a2 for a given value of M .

The temperature dependence of the Fe–Mg dis-
tribution coefficient between garnet and coexisting
minerals such as biotite, orthopyroxene and clinopy-
roxene, constitutes some of the most widely used
geothermometers [12]. However, recently questions
have been raised if the Fe–Mg exchange geother-
mometers record peak metamorphic temperatures of
high grade metamorphic rocks even when one uses
the compositions around the center of a mineral grain
[13,14]. The calculations presented in Figs. 4 and 5
permit us to address this problem to some extent. A
garnet surrounded by biotite would effectively sat-
isfy the condition that the crystal is surrounded by a
homogeneous infinite reservoir, since D.biotite/ ×
D.garnet/ (biotite is never zoned), and the mass
of the surrounding biotite is often large enough to
remain at a fixed concentration. Now, if the peak
metamorphic temperature was ¾900ºC, then a 2 mm

diameter spherical garnet crystal surrounded by bi-
otite would not preserve the compositional signature
of that temperature even at the core unless the rock
had a cooling rate greater than 100ºC=Ma (Fig. 4),
which is unusual for a metamorphic rock. However,
for To ¾ 700ºC, the record of the peak temperature
would be preserved at the core of a similar garnet
grain, even when it was subjected to extremely slow
cooling. If the concentration profile of garnet were
measured normal to a straight edge which is much
longer compared to the length of the diffusion pro-
file, then the proper approximation of geometry is a
plane sheet, for which TC would be somewhat higher
for a given value of M and To (Fig. 4).

It should be noted that the retrograde adjustment
of garnet composition illustrated in Figs. 4 and 5 rep-
resents the maximum possible adjustment for a given
set of conditions (To, E and M), as the surrounding
matrix has been assumed to have a diffusion coeffi-
cient of the species that is much larger than that of
garnet. When a garnet is in contact with a mineral
like ortho- or clino-pyroxene, in which D.Fe–Mg/
is at least as slow as in garnet [15,16], the compo-
sition of garnet will readjust much more slowly for
a given M . Thus, the Fe–Mg exchange thermome-
try using core compositions of garnet–orthopyroxene
and garnet–clinopyroxene pairs may, in some cases,
yield higher temperatures than those obtained from
the garnet–biotite pairs in the same rock, especially
if the rock had a relatively high peak metamorphic
temperature. On the other hand, if it can be inde-
pendently established that the temperature obtained
from the garnet–biotite pair is lower than the peak
metamorphic temperature (To), then the cooling rate
of the rock can be readily obtained from the value
of the dimensionless parameter M corresponding to
the extent of resetting of temperature, as illustrated
in Figs. 4 and 5.

Following Lasaga [10], a value of 10 for a di-
mensionless parameter, 
 0, has been assumed in
some earlier studies [17,18] as the minimum value
at which the initial composition would be preserved
at the core of a mineral grain. The parameter 
 0, as
defined in [10], is the inverse of the parameter M
of Dodson [3,4]. The results summarized in Fig. 5
support the above assumption for the retention of
core temperature in minerals with E ³ 65 kcal=
mol.
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and normalized distance for a T –t path defined by an asymptotic
cooling model (1=T D 1=To C �t) with � D 2:11 ð 10�6 K�1

Ma�1, which corresponds to a cooling rate of 2 K=Ma at 973 K.
Doubling of cooling rate causes the ∆t to reduce by the same
factor for a fixed M. The activation energy (E) used in these
calculations is 26 kJ=mol. For a geochronological system with
different activation energy (Ei) of diffusion, the value of � is
given by 0:1447=Ei.

5. Closure ages, cooling rates and geochronology

Using the relation 1=T D 1=To C �.∆t/, where
∆t is the elapsed time from To to T , Eq. 12 can be
rewritten as:

∆t .x/ D R

�E

ð
ln M C G.x/C g.x/

Ł
(16)

This expression permits calculation of the reset-
ting of mineral age during cooling, as determined by
a specific geochronological system. (It is interesting
to note that the extent of resetting does not depend
explicitly on To and grain size; these effects have
been absorbed in M .) As an example, we have illus-
trated in Fig. 6 the Sm–Nd age profiles of a spherical
garnet crystal relative to its homogenization age at
To, using the available diffusion data of these ele-
ments [7], and � D 2:11 ð 10�6 K�1 Ma�1, which
corresponds to a cooling rate of 2 K=Ma at 973 K
(dT=dt D ��T 2). A horizontal dashed line indicates

the mean age of the grain corresponding to the age
profile to which it is connected. The age profiles
for a grain with the plane sheet geometry, but with
the same value of activation energy as that of Nd in
garnet (¾26 kJ=mol at 7 kbar, graphite buffer [7]),
are also shown for comparison. Those for cylinder
will be intermediate between the spherical and plane
sheet geometries.

With the increased sophistication of analytical
techniques, we may hope to be able to determine
age profiles in the not too distant future, either by
isotope dilution and thermal ionization mass spec-
trometry of very small quantities of samples drilled
from different portions of the same grain or by
SHRIMP (sensitive high resolution ion microprobe)
or by laser ablation in ICP–MS (inductively coupled
mass spectrometer). The cooling rate of a crystal
can be determined by comparing the measured and
calculated age profiles. Fig. 6 can be used for any
system by noting that the calculated age profiles re-
late only to specific values of M and �E . The value
of �E used in calculating Fig. 6 is 0.1447. Thus, the
appropriate value of � corresponding to the age pro-
files in Fig. 6 for a mineral with different activation
energy, Ei, is given by 0:1447=Ei .

A further potential application of Eq. 16 and
Fig. 5 lies in its usefulness in the determination of
whether an average mineral age determined by iso-
tope dilution of separated mineral grains from a rock
according to a specific decay system corresponds
to its metamorphic age or cooling age, if the ap-
propriate kinetic properties and the grain size are
known and one has an idea of the probable limits
of the cooling rate. For example, let us consider the
garnet–whole rock age of the eclogites from Dora
Maira, Italy, determined recently by the Lu–Hf de-
cay system by thermal ionization mass spectrometry
[19]. There are no available diffusion data for either
Lu or Hf in garnet, but our on-going study of the
REE diffusion in garnet as a function of ionic size
suggests that D.Lu/ should be around a factor of 2
larger than that of D.Nd/. The TC for the Lu–Hf
decay system in garnet should be controlled by the
diffusivity of Lu as it should have a larger diffu-
sion coefficient between the two species owing to its
smaller charge, which is most unlikely to be counter-
balanced by its slightly larger radius in the eight-fold
coordination (Lu3C D 0.848 Å; Hf 4C D 0.83 Å;
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[20]). Thus, using the Nd diffusion data from [7] and
D.Lu/ ³ 2D.Nd/, we obtain D.Lu/ ³ 5 ð 10�18

cm2=s at the estimated To D 700ºC [19]. The av-
erage radius of garnet crystals in the Dora Maira
eclogites is ¾2.5 mm [Duchêne, pers. comm.]. Thus
from Eq. 13 we get M ³ 0:005=.dT=dt/, where the
cooling rate is in the unit of K=Ma at 973 K.

Owing to the preservation of coesite inclusions in
pyrope, the Dora Maira rocks are generally believed
to have exhumed very rapidly. Chopin et al. [21] es-
timated a cooling rate of 7–15ºC=Ma at the onset of
exhumation of the Dora Maira rocks. Using Eq. 13,
one would, thus, estimate a value of M < 0:001 for
these rocks. This implies (Fig. 6) a resetting of less
than 3 Ma of the mean Lu–Hf age of the garnets in
the Dora Maira eclogites, corroborating the indepen-
dent conclusion of Duchêne et al. [19] that the mean
Lu–Hf age of garnets from the Dora Maira eclog-
ites essentially dates the high pressure metamorphic
event.

6. Note

Computer programs to carry out the calculations
illustrated in Figs. 4–6 are available, on request,
from the authors.
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Appendix A. List of symbols

C Euler constant (0.5772157: : : )
D Diffusion coefficient expressed as D D

Do e�E=RT D D.To/ e�t=− assuming E=RT D
E=RTo C t=−

E Activation energy of diffusion
G.x/ and G The closure function and the mean weighted clo-

sure function of Dodson [4]

g.x/ and g The correction closure function and the mean
weighted correction closure function

M A dimensionless parameter relating cooling rate,
diffusion properties and grain size, Eq. 3.2 and
Eq. 13

To The temperature at which a mineral has achieved
homogeneous composition of the diffusing species
at the onset of or during cooling

TC.x/ and T The closure temperature profile of a diffusing
species in a single crystal and the mean weighted
closure temperature

− A characteristic time by which the diffusion coef-
ficient decreases by a factor of ‘e’ (i.e. by ¾2=3)
during cooling

� A cooling time constant (K�1 t�1) relating time
linearly to 1=T .1=T D 1=To C �t/
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